引用本文:李庆良,雷虎民,邵雷,陈治湘.基于即时学习的MIMO系统滑模预测控制方法[J].控制理论与应用,2011,28(8):1159~1163.[点击复制]
LI Qing-liang,LEI Hu-min,SHAO Lei,CHEN Zhi-xiang.Sliding mode predictive control for MIMO systems via lazy learning[J].Control Theory and Technology,2011,28(8):1159~1163.[点击复制]
基于即时学习的MIMO系统滑模预测控制方法
Sliding mode predictive control for MIMO systems via lazy learning
摘要点击 3074  全文点击 1652  投稿时间:2010-07-05  修订日期:2010-09-28
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2011.8.CCTA100782
  2011,28(8):1159-1163
中文关键词  即时学习  滑模预测控制  数据驱动控制  多输入多输出系统
英文关键词  lazy learning  silding mode predictive control  data-driven control  MIMO systems
基金项目  航空科学基金资助项目(20090196005).
作者单位E-mail
李庆良* 空军工程大学 导弹学院 402liqingliang@163.com 
雷虎民 空军工程大学 导弹学院  
邵雷 空军工程大学 导弹学院  
陈治湘 93617部队 装备部  
中文摘要
      针对MIMO非线性系统的控制问题, 采用数据驱动的控制策略, 将具有本质自适应能力的即时学习算法与具有强鲁棒性的滑模预测控制相结合, 设计了一种基于即时学习的滑模预测(LL--SMPC)控制方法. 该方法在在线局部建模的基础上, 采用滑模预测控制律求取最优控制量, 具有较强的自适应和抗干扰能力, 并避免了Diophantine方程的求解, 有效减少了计算量. 通过仿真研究, 验证了算法的有效性.
英文摘要
      To solve the control problem of MIMO nonlinear system, we propose a sliding mode predictive control based on lazy learning(LL--SMPC) method. The LL--SMPC builds the local model online based on the lazy learning algorithm and obtains the optimal control law by solving the quadratic optimization problem formulated in sliding mode predictive control framework; therefore it has strong adaptive ability and anti-jamming ability. Furthermore, the computation complexity is reduced by avoiding solving of Diophantine equation. Simulation results show that the proposed method is effective.