引用本文:李静,胡云安,耿宝亮.控制方向未知的二阶时变非线性系统自适应迭代学习控制[J].控制理论与应用,2012,29(6):730~740.[点击复制]
LI Jing,HU Yun-an,GENG Bao-liang.Adaptive iterative learning-control for second-order time-varying nonlinear system with unknown control directions[J].Control Theory and Technology,2012,29(6):730~740.[点击复制]
控制方向未知的二阶时变非线性系统自适应迭代学习控制
Adaptive iterative learning-control for second-order time-varying nonlinear system with unknown control directions
摘要点击 2767  全文点击 1901  投稿时间:2011-01-19  修订日期:2011-10-17
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2012.6.CCTA110098
  2012,29(6):730-740
中文关键词  迭代学习控制  自适应控制  时变不确定性  神经网络  Nussbaum增益
英文关键词  iterative learning control  adaptive control  time-varying uncertainties  neural networks  Nussbaum gain
基金项目  国家自然科学基金资助项目(61004002).
作者单位E-mail
李静* 海军航空工程学院 控制工程系
中国人民解放军 91055部队 
lijing7292013@163.com 
胡云安 海军航空工程学院 控制工程系  
耿宝亮 海军航空工程学院 控制工程系  
中文摘要
      对一类二阶严格反馈时变非线性系统的自适应迭代学习控制问题进行了研究. 系统中含有非周期时变参数化不确定性且控制方向未知. 首先, 提出了一种神经网络估计器, 实现了对未知非周期时变非线性函数的逼近. 随后, 用Nussbaum函数对未知控制方向进行了自适应估计, 并综合应用backstepping技术和自适应迭代学习控制技术设计了控制器. 所设计的控制器能保证系统所有状态量在L_{pe}–范数意义下有界, 且系统的输出量在L{^2}_T–范数意义下收敛到期望轨迹. 最后的仿真研究证明了控制器设计方法的有效性.
英文摘要
      We investigate the adaptive iterative learning control for a class of second-order strict-feedback nonlinear systems with non-periodically time-varying parameterized uncertainties and unknown control directions. Firstly, a neural network estimator is proposed to approximate unknown non-periodically time-varying nonlinear functions. Subsequently, Nussbaum function is applied to estimate the control directions adaptively. At the same time, the backstepping and adaptive iterative learning control technique are combined to design the controller. The controller guarantees that all state variables are bounded in L_{pe}–norm and the output tracks the desired trajectory perfectly in L{^2}_T-norm. Finally, the effectiveness of proposed scheme is validated by simulation research.