引用本文: | 王萌,周绍生.自旋量子系统的可控李代数计算[J].控制理论与应用,2013,30(8):1059~1064.[点击复制] |
WANG Meng,ZHOU Shao-sheng.Calculations of the controllability Lie algebra for spin quantum systems[J].Control Theory and Technology,2013,30(8):1059~1064.[点击复制] |
|
自旋量子系统的可控李代数计算 |
Calculations of the controllability Lie algebra for spin quantum systems |
摘要点击 3674 全文点击 2024 投稿时间:2012-09-04 修订日期:2013-04-21 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2013.20928 |
2013,30(8):1059-1064 |
中文关键词 量子系统 李代数 基系数 可控性 su(4) |
英文关键词 quantum system Lie algebra basis coefficient controllability su(4) |
基金项目 国家重点基础研究“973”计划资助项目(2012CB821204); 国家自然科学基金资助项目(61273093); 浙江省重点自然科学基金资助项目(LZ12F03001). |
|
中文摘要 |
动态系统可控性同是经典和量子控制中研究的一个基本问题, 本文研究了单自旋和双自旋量子系统的可控李代数的计算. 首先基于量子系统可控的等价性条件, 通过单量子系统Hamiltonian算符的李括号运算, 给出了与基系数相关的系统可控的充要条件. 然后利用Cartan分解方法构造了李代数su(4)的矩阵基, 同时根据可控性基本定理提出了Hamiltonian算符多重李括号的计算方法及系统的可控性判据. |
英文摘要 |
Controllability of dynamical systems is a fundamental problem for both classical control as well as quantum control. This paper focuses on investigating the controllability Lie algebra of single-spin and two spin quantum systems. Firstly, based on the equivalent controllability conditions of quantum systems, some general necessary and sufficient conditions related to the basis coefficients are obtained by computing Lie brackets of Hamiltonian operators for single-spin quantum systems. Secondly, the matrix basis of Lie algebra su(4) is generated by Cartan decomposition. Using the matrix basis and employing the controllability theorem of quantum system, a calculation method of multiple Lie brackets for the Hamiltonian operators and a controllability criterion of quantum systems are also put forward in this article. |