引用本文:贾杰,陈晨,曹姣,罗小娜,丁锋.广义输出误差模型的两阶段最小二乘递推辨识[J].控制理论与应用,2014,31(2):195~200.[点击复制]
JIA Jie,CHEN Chen,CAO Jiao,LUO Xiao-na,DING Feng.Two-stage least squares recursive identification for generalized output error models[J].Control Theory and Technology,2014,31(2):195~200.[点击复制]
广义输出误差模型的两阶段最小二乘递推辨识
Two-stage least squares recursive identification for generalized output error models
摘要点击 2740  全文点击 2357    
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  
  2014,31(2):195-200
中文关键词  随机系统  最小二乘  两阶段递推  辅助模型
英文关键词  stochastic system  least squares  two-stage recursion  auxiliary model
基金项目  中国国家自然基金资助项目(61263012, 61263040); 中国博士后基金资助项目(2012M510593); 航空科学基金资助项目(20120156001).
作者单位
贾杰 南昌航空大学 信息工程学院 
陈晨 南昌航空大学 信息工程学院 
曹姣 南昌航空大学 信息工程学院 
罗小娜 南昌航空大学 信息工程学院 
丁锋 江南大学物联网工程学院 
中文摘要
      在有色噪声干扰系统中有一类系统, 它具有广义输出误差模型(OEARMA), 本文提出一类广义输出误差模型的两阶段递推最小二乘参数估计算法. 该算法基本思想是结合辅助模型辨识思想和分解技术, 将系统分解成两个子系统,每个子系统包含一个参数向量. 借助基于辅助模型和递推最小二乘理论, 用辅助模型的输出代替辨识模型信息向量中未知中间变量, 用估计残差代替信息向量中不可测噪声项, 从而可以运用递推辨识思想来估计系统所有参数. 该算法具有较高的计算效率, 仿真例子说明提出算法的有效性.
英文摘要
      A class of the colored noise interference systems is with the generalized output error model (OEARMA). This paper presents a two-stage recursive least squares algorithm for their parameter identifications. The basic idea is to combine the auxiliary model identification idea and the decomposition technique to decompose a system into two subsystems, each of which contains one parameter vector. When applying the auxiliary model-based recursive extended least squares theory, we employ the auxiliary model output to replace the unknown intermediate variables in the identified model information vector, and use the estimated residuals to replace the immeasurable noise terms in the information vector. This makes it possible to apply the recursive identification idea to estimate all the parameters of the system with a high computational efficiency. The simulation examples validate the effectiveness of the proposed algorithm.