引用本文: | 熊少锋,王卫红,王森.带攻击角度约束的非奇异快速终端滑模制导律[J].控制理论与应用,2014,31(3):269~278.[点击复制] |
XIONG Shao-feng,WANG Wei-hong,WANG Sen.Nonsingular fast terminal sliding-mode Guidance with Intercept Angle Constraint[J].Control Theory and Technology,2014,31(3):269~278.[点击复制] |
|
带攻击角度约束的非奇异快速终端滑模制导律 |
Nonsingular fast terminal sliding-mode Guidance with Intercept Angle Constraint |
摘要点击 3977 全文点击 3026 投稿时间:2013-06-28 修订日期:2013-10-15 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2014.30644 |
2014,31(3):269-278 |
中文关键词 非线性制导律 攻击角度约束 有限时间收敛 终端滑模控制 非奇异 |
英文关键词 nonlinear guidance law intercept angle constraint finite time convergence terminal sliding mode control nonsingularity |
基金项目 基于前视技术的TF/TA2研究项目(B212013XXXX). |
|
中文摘要 |
本文利用先进的终端滑模控制和李雅普诺夫稳定性理论设计了一种非奇异、本质上连续和有限时间收敛
的带攻击角度约束的制导律, 它可用于打击固定、匀速运动和机动目标. 为了在有限时间内高精度地获得给定的攻
击角度并不出现奇异问题, 非奇异快速终端滑模函数被用于设计滑模面. 快速终端滑模函数被用于设计趋近律, 在
整个到达阶段系统轨迹可以从任意初始状态快速地收敛到滑模面并形成本质上连续的制导律. 由于非奇异、本质
上连续和全局快速收敛的特性, 和传统的终端滑模制导律相比, 本文方法可以在更短时间内以更高精度的攻击角度
对目标实施打击. 大量的仿真算例表明了本文制导律的有效性. |
英文摘要 |
A nonsingular, essentially continuous and finite-time convergent intercept angle control guidance law for
engaging stationary, constant-speed and maneuvering targets is developed by using advanced terminal sliding-mode control
schemes and Lyapunov stability theory. In order to achieve the specified intercept angle in finite-time without singularity,
the nonsingular fast terminal sliding-mode control algorithm is employed to construct the sliding surface. The fast terminal
sliding-mode control technique is employed to establish the reaching law, so the system trajectory convergences quickly
from any initial state to the switching surface in the entire reaching phase and yields essentially continuous guidance
law. Due to its inherent singularity-free attribute, continuity and faster convergence rate, no approximation is necessary
in the execution of the proposed guidance law, so higher precision tracking of the desired intercept angle in a shorter
time interval with smoother guidance command can be guaranteed when compared with conventional terminal slidingmode
guidance law. A large number of numerical simulation examples are implemented to justify the effectiveness of the
proposed guidance law. |