引用本文:叶镭,夏元清,付梦印,李春明.无人炮塔炮控系统自抗扰控制[J].控制理论与应用,2014,31(11):1580~1588.[点击复制]
YE Lei,XIA Yuan-qing,FU Meng-yin,LI Chun-ming.Active disturbance rejection control for gun control system of unmanned turret[J].Control Theory and Technology,2014,31(11):1580~1588.[点击复制]
无人炮塔炮控系统自抗扰控制
Active disturbance rejection control for gun control system of unmanned turret
摘要点击 2851  全文点击 1421  投稿时间:2013-09-25  修订日期:2014-06-21
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2014.31011
  2014,31(11):1580-1588
中文关键词  无人炮塔系统  机器人分析技术  自抗扰控制  三轴稳定
英文关键词  unmanned turret system  robotic analysis technique  active disturbance rejection control  three-axis stabilization
基金项目  国家重点基础研究发展计划(“973”计划)资助项目(2012CB720000); 国家自然科学基金资助项目(61225015); 教育部博士点基金资助项目(20111101110012); CAST创新基金资助项目(CAST201210); 国家自然科学基金创新研究群体资助项目(61321002).
作者单位E-mail
叶镭 北京理工大学 自动化学院  
夏元清* 北京理工大学 自动化学院 xia_yuanqing@163.net 
付梦印 北京理工大学 自动化学院  
李春明 中国北方车辆研究所  
中文摘要
      本文运用机器人分析技术来建立无人炮塔的数学模型, 这种方法考虑了炮塔方位向和高低向之间的耦合关系. 同时, 由于陀螺机构测得的是惯性空间中的角位移, 结合三轴稳定原理, 对无人炮塔的方位向和高低向射角进行修正, 实现火炮轴线在惯性空间中的稳定. 针对炮控系统这一包含非线性和不确定性的复杂系统, 能在参数摄动和不确定的外部扰动的情况下获得高跟踪精度和稳定性, 提出了一种基于自抗扰控制的解耦方法. 系统的内部参数摄动、外部扰动和耦合项作为总扰动被扩张状态观测器估计出来, 然后在采样间隔被补偿掉. 将仿真结果与PID控制作比较, 结果表明该控制算法能够有效抵抗系统的不确定非线性因素, 并验证了其强鲁棒性和有效性.
英文摘要
      In this paper, a complete mathematical model for unmanned turret system is built based on robotic analysis technique, which takes the nonlinear coupling between azimuth and elevation into consideration. In addition, it provides correction of angles of the azimuth and elevation by using three-axis stabilization principle because of angular displacements measured by gyroscope mechanism in inertia space. And, to achieve high tracking precision and stabilization of gun control system which contains nonlinearity and uncertainty in the situation of parameters perturbation and uncertain external disturbances, a decoupling active disturbance rejection control scheme is proposed. The inner parameters uncertainty, the external disturbances and the coupled effect of the system are estimated as the total disturbances by using extended state observer and compensated during each sampling period. Simulation results show strong robustness and effectiveness of this control algorithm which can reject uncertain nonlinear factors of the system in comparison to the PID control.