引用本文:万军,赵不贿.线性定常系统的Petri网解耦控制[J].控制理论与应用,2014,31(9):1213~1220.[点击复制]
WAN Jun,ZHAO Bu-hui.Petri nets decoupling control for linear time-invariant systems[J].Control Theory and Technology,2014,31(9):1213~1220.[点击复制]
线性定常系统的Petri网解耦控制
Petri nets decoupling control for linear time-invariant systems
摘要点击 3425  全文点击 2567  投稿时间:2013-11-13  修订日期:2014-04-14
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2014.31194
  2014,31(9):1213-1220
中文关键词  线性定常系统  Petri网  广义连续自控网系统  解耦  模型结构  状态反馈
英文关键词  linear time-invariant system  Petri nets  generalized continuous cyber net system  decoupling  model struc- tures  state feedback
基金项目  国家自然科学基金资助项目(61070058); 江苏高校优势学科建设工程资助项目(苏政办发(2011)6号); 江苏省普通高校研究生科研创新 计划资助项目(CXLX13 665).
作者单位E-mail
万军* 江苏大学 电气信息工程学院
常州大学 城市轨道交通学院 
13815074795@139.com 
赵不贿 江苏大学 电气信息工程学院  
中文摘要
      将Petri网与现代控制理论相结合, 应用于连续系统的性能分析如可控性、可观性和稳定性等已日益普遍, 但Petri网应用于系统的解耦控制研究很少. 提出了广义连续自控网系统的形式化定义, 描述了线性定常系统的广义 连续自控网系统模型并分析了广义连续自控网系统模型与状态空间描述的等效性. 基于状态反馈动态解耦的基本 原理, 探讨了利用Petri网模型结构实现线性定常系统解耦控制的新方法. 该方法采用图的遍历算法, 可有效的判断 系统的可解耦性以及实现解耦控制律, 避免了传统解耦控制方法中计算所需的大量矩阵运算. 最后给出了两个具体 的应用实例.
英文摘要
      It is increasingly common for Petri nets to combine with modern control theory and to be applied to contin- uous system performance analysis, such as controllability, observability and stability. However, Petri nets are rarely used in system decoupling control. The formal definition of one new class of Petri nets called generalized continuous cyber net system is developed. A generalized continuous cyber net system model for a linear time-invariant system is depicted and its equivalence with state space description model is analyzed. Based on the state feedback dynamic decoupling principles, a new decoupling control method for linear time-invariant systems is explored by using the Petri nets model structures. Graph traversal algorithms are used in this method, which can effectively determine whether the coupling system can be decoupled and achieve the decoupling control rule, thus avoiding a large number of matrix operations in the traditional decoupling control methods. Two application examples are given.