引用本文: | 刘希,孙秀霞,徐嵩,蔡鸣.具有次优保性能滑动模态的静态输出反馈滑模控制[J].控制理论与应用,2014,31(11):1441~1447.[点击复制] |
LIU Xi,SUN Xiu-xia,XU Song,CAI Ming.Static output feedback sliding mode control with suboptimal guaranteed cost sliding mode[J].Control Theory and Technology,2014,31(11):1441~1447.[点击复制] |
|
具有次优保性能滑动模态的静态输出反馈滑模控制 |
Static output feedback sliding mode control with suboptimal guaranteed cost sliding mode |
摘要点击 2401 全文点击 2089 投稿时间:2014-02-27 修订日期:2014-06-02 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2014.40146 |
2014,31(11):1441-1447 |
中文关键词 输出反馈 滑模控制 保性能 迭代线性矩阵不等式 |
英文关键词 output-feedback sliding-mode control guaranteed cost iterative linear matrix inequality (ILMI) |
基金项目 国家自然科学基金资助项目(61273141); 航空科学基金资助项目(20121396008, 20135896025). |
|
中文摘要 |
针对一类不确定系统, 提出了一种具有次优保性能滑模面的静态输出反馈滑模控制方法. 首先将滑模面的设计问题等价为一个对称矩阵的求解问题, 基于等效控制法, 推导了保性能滑模面存在的充分条件. 然后基于迭代线性矩阵不等式(iterative linear matrix inequality, ILMI)方法, 给出了次优保性能线性滑模面的求解算法, 最后基于线性矩阵不等式(linear matrix inequality, LMI)方法, 设计了输出反馈滑模控制器, 使得闭环系统渐近稳定且切换函数能在有限时间内到达零. 该方法首次实现了输出反馈滑模面的优化, 且具有保守性小、无需对被控系统模型进行坐标变换的优点. 仿真结果验证了本文方法的优越性. |
英文摘要 |
A method of static output feedback sliding mode control with suboptimal guaranteed cost sliding mode is proposed for a class of uncertain systems. At first, the designing of the sliding surface is equated to the solution of a symmetric matrix and the existence condition of sliding surface is derived based on equivalent control principle. Then, by using iterative linear matrix inequality (ILMI) approach, an algorithm for the solution of linear sliding surface with
suboptimal guaranteed cost is proposed. At last, a static output feedback controller is designed based on linear matrix inequality (LMI) approach, which can ensure asymptotically stable of the closed-loop system and the switch function can convergence to zero in finite time. The proposed method firstly realized optimization of output feedback sliding surface, and possess characteristic such as less conservation and no needing to use coordinate transform on system model. Simulation results verified the superiority of the proposed method. |
|
|
|
|
|