引用本文:乔景慧,柴天佑.改进ELMAN网络的Q学习温度切换控制[J].控制理论与应用,2015,32(7):955~962.[点击复制]
QIAO Jing-hui,CHAI Tian-you.Temperature switching control integrated with improved ELMAN network and Q learning[J].Control Theory and Technology,2015,32(7):955~962.[点击复制]
改进ELMAN网络的Q学习温度切换控制
Temperature switching control integrated with improved ELMAN network and Q learning
摘要点击 3116  全文点击 1320  投稿时间:2014-07-10  修订日期:2015-01-27
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2015.40642
  2015,32(7):955-962
中文关键词  料分解过程  分解炉温度  改进ELMAN网络  Q学习控制  切换控制
英文关键词  raw meal calcination process  calciner temperature  improved ELMAN network  Q learning control  switching control
基金项目  国博士后科学基金项目(2014M561249, 2015T80268), 国家自然科学基金面上项目(61273177)资助.
作者单位E-mail
乔景慧* 沈阳工业大学 机械工程学院 qiaojh2002@163.com 
柴天佑 东北大学 流程工业综合自动化国家重点实验室  
中文摘要
      在水泥生料分解过程中, 由于生料边界条件频繁变化且生料流量波动大, 使过程处于正常工况或异常工况, 致使分解炉温度和预热器C5出口温度很 难控制在工艺要求的范围内. 传统的控制方法经常导致预热器C5下料管堵塞. 为了解决上述问题, 本文提出了一个带有前馈补偿的温度智能切换控制策略, 由基于T--S的模糊控制器、基于改进的ELMAN网络的Q学习异常工况控制器和切换机制组成. 实际应用结果表明, 所提出的控制策略能够根据当前工况的变化选择正确的控制器, 并且使生产远离故障工况.
英文摘要
      Because of the frequent change of the boundary conditions as well as the large variation in the law meal flow in calcination process, the process is often switching between the normal and abnormal working conditions. This causes difficulties to maintain the calciner temperature and the outlet temperature of preheater C5 (i.e., the No. 5 preheater) within their desired range of operations. Conventional control may even lead to operational failure, such as the clogging of feeding tube C5. To deal with this problem, we develop an intelligent temperature control scheme with feedforward compensation, which consists of a T–S-based fuzzy controller, an abnormal condition controller, an improved ELMAN network with Q learning, and a switching mechanism. The application results show that the proposed approach can select a right controller based on the current conditions to maintain the operation far from the faulty operation conditions.