引用本文:李晓理,刘德馨,周翔,陈先中.高炉布料设定值优化控制[J].控制理论与应用,2015,32(12):1660~1668.[点击复制]
LI Xiao-li,LIU De-xin,ZHOU Xiang,CHEN Xian-zhong.Setting value optimal control for blast furnace burden distribution[J].Control Theory and Technology,2015,32(12):1660~1668.[点击复制]
高炉布料设定值优化控制
Setting value optimal control for blast furnace burden distribution
摘要点击 2781  全文点击 2832  投稿时间:2014-09-12  修订日期:2015-05-12
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2015.40856
  2015,32(12):1660-1668
中文关键词  布料  优化设定值  多模型  自适应控制
英文关键词  burden distribution  optimal setting value  multiple models  adaptive control
基金项目  国家自然科学基金项目(61473034), 高等学校博士学科点专项科研基金(博导类)(20130006110008)资助.
作者单位E-mail
李晓理* 北京工业大学 电子信息与控制工程学院 lixiaoli@hotmail.com 
刘德馨 北京科技大学自动化学院控制科学与工程系  
周翔 北京科技大学自动化学院控制科学与工程系  
陈先中 北京科技大学自动化学院自动控制研究所  
中文摘要
      高炉炼铁是钢铁生产中的重要能耗因素. 为了实现生产的节能降耗, 布料策略显得极为重要. 本文针对某 钢铁厂高炉的无料钟布料系统, 基于现场采集的数据, 建立了以铁水质量和经济效益为变量的指标效益评价函数, 给出了最优设定料面的推理机制. 针对不同运行环境, 建立不同的料面优化设定值, 构成多模型集合. 当工况环境发 生大的变化时, 采用切换机制, 对比多模型集合, 选择最优料面设定值, 并在此基础上对布料进行自适应控制, 计算 布料矩阵, 提高布料过程的快速性和准确性. 最后对整个高炉动态优化控制系统做了总体分析, 基于现场数据, 对 高炉布料模型进行了仿真和验证.
英文摘要
      Iron-making in blast furnace plays an important role in the energy consumption of steel production. To realize the energy-saving and consumption-reducing, the strategy for load-distribution is of key importance. According to the collected field data, we propose a performance-evaluation function with molten iron quality and economic efficiency as variables; develop the principle for designing the optimal burden surface; buildup optimal setting-values for various burden surfaces to constitute the multi-model set in different operation environments. When a large change in the operation environment is occurred, a switching device is operated to select the setting value of the optimal burden surface from the multi-model set. By this time, an adaptive controller will be put into operation to control the process of burden distribution, to adaptively calculate the burden distribution matrix and to enhance the accuracies and rapidity of process of burden distribution. Finally, a complete analysis is carried out for the dynamic control system with the furnace as a whole. Simulation based on the field data has been carried out; the results validate the effectiveness of the proposed strategy.