引用本文:钟晓静,邓飞其.随机多种群易感者、感染者和移出者传染病模型的阈值[J].控制理论与应用,2016,33(10):1303~1311.[点击复制]
ZHONG Xiao-jing,DENG Fei-qi.Sharp threshold of a multi-group susceptical infective and removal model by stochastic perturbation[J].Control Theory and Technology,2016,33(10):1303~1311.[点击复制]
随机多种群易感者、感染者和移出者传染病模型的阈值
Sharp threshold of a multi-group susceptical infective and removal model by stochastic perturbation
摘要点击 4592  全文点击 1804  投稿时间:2015-03-27  修订日期:2016-09-28
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2016.50240
  2016,33(10):1303-1311
中文关键词  随机多种群SIR传染病模型  阈值  渐进稳定性  随机镇定
英文关键词  stochastic multi-group SIR model  sharp threshold  asymptotically stable  stochastic stabilization
基金项目  Supported by National Natural Science Foundation of China (61273126) and Fundamental Research Funds for Guangzhou Universities (ZXJ3–2001).
作者单位E-mail
钟晓静 华南理工大学 zhongxj1986@126.com 
邓飞其* 华南理工大学 aufqdeng@scut.edu.cn 
中文摘要
      本文建立了一类随机多种群易感者、感染者和移出者(susceptical infective and removal, SIR)传染病微分方程 模型, 针对模型找到与随机因素相关的阈值用于判定疾病的消亡与否. 通过阈值里随机干扰的作用给出疾病防控的新方 法—–随机镇定. 与此同时, 本文探究无病平衡点的全局稳定性并通过数据仿真实例解释上述理论结果的正确性和可行 性.
英文摘要
      For a stochastic differential equation epidemic model of multi-group susceptical infective and removal (SIR) type, we define the basic reproduction number RS 0 and show that it is a sharp threshold for the dynamics of the stochastic multi-group SIR model which determines whether the epidemic occurs or not. Our analytic results of stochastic stabilization applies a new viable measure to disease control. Furthermore, we investigate the global asymptotic behaviour of the disease. Finally we give numerical simulation to illustrate our analytical results.