引用本文: | 许璟,蔡晨晓,李勇奇,邹云.小型四旋翼无人机双闭环轨迹跟踪与控制[J].控制理论与应用,2015,32(10):1335~1342.[点击复制] |
XU Jing,Cai Chen-xiao,LI Yong-qi,Zou yun.Dual-loop path tracking and control for quad-rotor miniature unmanned aerial vehicles[J].Control Theory and Technology,2015,32(10):1335~1342.[点击复制] |
|
小型四旋翼无人机双闭环轨迹跟踪与控制 |
Dual-loop path tracking and control for quad-rotor miniature unmanned aerial vehicles |
摘要点击 4415 全文点击 2352 投稿时间:2015-05-15 修订日期:2015-07-11 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2015.50406 |
2015,32(10):1335-1342 |
中文关键词 无人飞行器 仿真器 非线性控制 奇异摄动思想 比例–微分–积分控制器 线性二次调节控制器 |
英文关键词 unmanned aerial vehicles simulators nonlinear control singular perturbation proportional integral derivative control linear quadratic regular control |
基金项目 中央高校基本科研业务费专项资金(30920140112005, 30915011105, 30915011104)资助 |
|
中文摘要 |
近年来, 无人飞行器控制繁荣发展对控制精度与品质要求日益增高. 为了应对这一挑战, 本文基于奇异摄
动的思想设计了四旋翼无人机非线性轨迹跟踪控制器. 首先, 基于牛顿欧拉定律建立了四旋翼无人飞行器非线性
奇异摄动形式的数学模型. 然后, 引入奇异摄动理论, 通过时间尺度分解的方法将系统解耦成内环快子系统和外环
慢子系统. 再者, 根据非线性动态逆的思想分别建立快、慢伪线性子系统, 并基于此分别设计外环轨迹跟踪、内环稳
定子控制器, 综合子控制器生成应用于原系统的全阶控制器以兼顾跟踪精度和鲁棒特性. 针对内环快系统, 采用线
性二次调节控制器以实现稳定快速地控制飞行器旋转动态; 针对外环慢系统, 运用经典的比例–微分–积分控制器
以跟踪所给定的轨迹. 最后给出了仿真实例说明本文结论的有效性. |
英文摘要 |
The recent development of unmanned aerial vehicle flight control creates a strong demand for higher control
accuracy and control quality. To meet such demands, we propose a nonlinear control strategy for path tracking control of
quad-rotor miniature unmanned aerial vehicles (MAVs). Firstly, based on Newton-Euler’s laws, the nonlinear mathematical
model of a quad-rotor MAV is built in singular perturbation form. By singular perturbation theory and time-scaling techniques,
we decouple the system into the fast inner-loop sub-system and the slow outer-loop subsystem. Then, we build the
fast pseudo-linear sub-system and the slow pseudo-linear sub-system based on the nonlinear dynamic inversion idea. On
the basis of these subsystems, we respectively design the outer sub-controller for path tracking and the inner sub-controller
for stabilization. These two sub-controllers are combined into a full-order controller for the original system to achieve the
required tracking accuracy and robustness. In the fast inner sub-system, we use the LQG controller to realize the rapid
control for the rotary dynamics of the aerial vehicle; in the slow outer sub-system, we employ the classical PID controller
to track the given path. Simulation results show the effectiveness of the conclusions made in this paper. |
|
|
|
|
|