引用本文:刘斌,陈来军,汪雨辰,梅生伟.应对风电出力不确定性的备用成本分摊: 联盟博弈方法[J].控制理论与应用,2016,33(4):437~445.[点击复制]
LIU Bin,CHEN Lai-jun,WANG Yu-chen,MEI Sheng-wei.Allocating reserve cost for hedging against wind generation uncertainty: a coalitional-game-theoretic approach[J].Control Theory and Technology,2016,33(4):437~445.[点击复制]
应对风电出力不确定性的备用成本分摊: 联盟博弈方法
Allocating reserve cost for hedging against wind generation uncertainty: a coalitional-game-theoretic approach
摘要点击 3043  全文点击 2416  投稿时间:2015-07-11  修订日期:2015-12-08
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2016.50610
  2016,33(4):437-445
中文关键词  风电出力不确定性  成本分摊  联盟博弈  Shapley值
英文关键词  uncertainty of wind generation  cost allocation  coalitional game  shapley value
基金项目  国家自然科学基金项目(51321005)资助.
作者单位邮编
刘斌 陕西省地方电力(集团)有限公司 710061
陈来军* 清华大学电机系,电力系统国家重点实验室 100084
汪雨辰 陕西省地方电力(集团)有限公司 
梅生伟 清华大学电机系,电力系统国家重点实验室 
中文摘要
      大规模风电并网后, 风电出力的不确定性将导致系统调度需要增加额外的备用及运行成本. 如何公平、合 理地在风电场间分摊该成本即成为大规模风电接入与消纳需要研究的重要问题之一. 为解决此问题, 本文基于联盟 博弈理论提出了一种新的成本分摊方法, 使得应对风电出力不确定性所增加的备用成本能够在各风电场间实现合 理分摊. 该方法由两部分组成: 首先应用“联盟博弈”促成风电场在上报其预测信息时的合作, 以降低系统调度总 成本及风电场所需分摊的总成本; 进而采用Shapley值保证风电场备用成本分摊的公平性. 论文以IEEE39节点系统 为仿真算例, 分析了风电场装机容量、预测精度、预测误差相关性等因素对风电场分摊成本的影响, 验证了所提方 法的有效性.
英文摘要
      With large-scale wind power integrated into power grid, more and more day-ahead reserve capacity and operation cost is required to hedge against the uncertainty of wind power generation in power system operation. However, how to share the cost among wind power plants in a reasonable way become one of the important issues on large-scale wind power integration and consumption. This paper proposes a coalitional-game-theoretic approach to allocate the cost of associated reserve capacity reasonably and fairly. Firstly, the “coalitional game”is applied to encourage the collaboration of wind farms for reducing the total cost. Secondly, the Shapley value is adopted to quantify the contribution of each wind farm to the total cost. Simulations are carried on a modified IEEE-39 bus system to validate the effectiveness of the proposed method. The impacts of wind generation capacity, wind generation prediction accuracy, and prediction correlation of different wind farms on the cost allocation are also analyzed.