引用本文: | 禹亮,程咏梅,陈克喆,赵会升,李松.水声多诱饵对抗环境鱼雷导引方法[J].控制理论与应用,2017,34(1):131~139.[点击复制] |
YU Liang,CHENG Yong-mei,CHEN Ke-zhe,ZHAO Hui-sheng,LI Song.Torpedo guidance method of the decoy jamming environment[J].Control Theory and Technology,2017,34(1):131~139.[点击复制] |
|
水声多诱饵对抗环境鱼雷导引方法 |
Torpedo guidance method of the decoy jamming environment |
摘要点击 2950 全文点击 1925 投稿时间:2015-10-02 修订日期:2016-10-20 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2017.50785 |
2017,34(1):131-139 |
中文关键词 水声弹道 导引 多目标 识别 跟踪 人工势场法 |
英文关键词 underwater ballistics guidance multi-target identification tracking artificial potential field |
基金项目 国家自然科学基金项目(61135001), 西安市科技计划项目(CXY1436(9))资助. |
|
中文摘要 |
针对声诱饵对抗环境下, 鱼雷常规的弹道导引方法难以兼顾对多个目标进行识别与打击要求, 提出了多诱
饵环境鱼雷导引方法基本框架, 并基于人工势场提出多目标导引方法. 该方法把目标似真概率和导引方向结合起
来, 使各目标在准确度未确定情况下对弹道的影响作用均能得以体现. 首先依据各目标的概率确定牵引目标并计
算出牵引关注度; 进而, 改进人工势场法的排斥因素, 提出了吸引关注度概念, 计算其他目标的吸引关注度及导引关
注度; 最后在机动能力限定下确定出鱼雷的角速度. 静态靶桩仿真和运动目标仿真实验结果表明, 该方法在保证对
似真概率最大的目标进行打击的同时, 能尽可能兼顾对多目标的探测识别, 能显著提高水声多诱饵环境下目标打击
的准确性. |
英文摘要 |
Submarine and decoys exist under the decoy jamming environment. Traditional trajectory guide methods of
the torpedo couldn’t guarantee the need for identifying and attack requires simultaneously on multiple targets. The torpedo
guidance method framework of the multi-decoy environment is suggested. Founding on the theory of the artificial potential
field, a multi-objective guidance method is also provided. The method combines the target plausibility probability and the
guiding direction systematically which can consider all targets’ effect to the torpedo. Firstly, the tract target is decided using
the probability of all targets and then the traction attention rate of the target is computed; next, the repulsion in artificial
potential field is improved and the concept of attracting attention is posed, the attracting attention and guiding attention rate
of all other targets can be got; finally, the angular velocity of the torpedo with the limitation of its maneuvering capability
is calculated. Simulation using static target piles and moving objects demonstrated that, the method cannot only guarantee
the attack of the maximum probability target and at the same time can give consideration to detection and recognition of as
much as possible targets. It can improve the accuracy of the attack significantly. |
|
|
|
|
|