引用本文:陈皓勇,王勇超,禤培正,梁子鹏,华栋.含高渗透率风电的微网系统鲁棒经济调度方法[J].控制理论与应用,2017,34(8):1104~1111.[点击复制]
CHEN Hao-yong,WANG Yong-chao,XUAN Pei-zheng,LIANG Zi-peng,HUA Dong.Robust economic dispatch method of microgrid containing high propotion of wind power[J].Control Theory and Technology,2017,34(8):1104~1111.[点击复制]
含高渗透率风电的微网系统鲁棒经济调度方法
Robust economic dispatch method of microgrid containing high propotion of wind power
摘要点击 2953  全文点击 1679  投稿时间:2016-01-13  修订日期:2016-09-12
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2017.60024
  2017,34(8):1104-1111
中文关键词  可再生能源  微网  鲁棒经济调度  误差边界  切负荷
英文关键词  renewable energy  microgrid  robust economic dispatch  error bound  load shedding
基金项目  国家优秀青年科学基金项目(51322702), 国家自然科学基金项目(51177049)资助.
作者单位E-mail
陈皓勇* 华南理工大学电力学院 eehychen@scut.edu.cn 
王勇超 华南理工大学电力学院  
禤培正 华南理工大学电力学院  
梁子鹏 华南理工大学电力学院  
华栋 华南理工大学电力学院  
中文摘要
      微网中可再生能源比重通常较大, 其固有的间歇性和随机性给微网调度带来困难. 为应对可再生能源的出 力波动, 本文综合考虑风、柴、燃料电池、蓄电池等机组运行特性, 建立了基于极限场景法的微网日前鲁棒经济调度 模型;通过将调度计划的弃风及切负荷电量转化为经济成本, 提出了使调度计划发电成本和风险成本(弃风、切负 荷成本之和)综合最优的误差边界优化方法. 从风电预测精度、蓄电池容量及切负荷价格3方面分析了鲁棒经济调 度在微网中的适应性. 结果表明: 微网鲁棒经济调度在发电成本上稍显劣势, 但在减少弃风、切负荷的电量方面具 有明显优势, 并且在风电预测精度低、蓄电池容量不足以及切负荷价格较高的微网地区更适合采用鲁棒经济调度 方法.
英文摘要
      Renewable energy usually accounts for a large proportion in microgrid, but its inherent intermittency and randomness bring difficulties to microgrid dispatch. In order to deal with the output fluctuations of renewable energy, this paper proposes a microgrid robust economic dispatch (RED) model based on extreme scenario method, considering the complicated generation constraints of wind turbines, diesel engines, fuel cells and batteries. By calculating the economic cost of electric energy of wind curtailment and load shedding, a method for optimizing the error bounds is proposed with the aim of minimizing comprehensive cost, which equals to the sum of generation cost and risk cost. RED method’s adaptability in microgrid is also analyzed in this paper from three perspectives including wind power prediction accuracy, accumulator capacity and load shedding price. The results indicate that despite RED method increases the generation cost slightly, it has obvious advantages in reducing electric energy of wind curtailment and load shedding. The analysis shows that, RED method is more suitable for cases with low wind power prediction accuracy, deficient battery storage capacity and high price of load shedding.