引用本文: | 李金娜,高溪泽,柴天佑,范家璐.数据驱动的工业过程运行优化控制[J].控制理论与应用,2016,33(12):1584~1592.[点击复制] |
LI Jin-na,GAO Xi-ze,CHAI Tian-you,FAN Jia-lu.Data-driven operational optimization control of industrial processes[J].Control Theory and Technology,2016,33(12):1584~1592.[点击复制] |
|
数据驱动的工业过程运行优化控制 |
Data-driven operational optimization control of industrial processes |
摘要点击 4245 全文点击 3324 投稿时间:2016-06-28 修订日期:2017-01-22 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2016.60455 |
2016,33(12):1584-1592 |
中文关键词 运行优化控制 设定值 近似动态规划 Q-学习 |
英文关键词 operational optimization control setpoints approximate dynamical programming Q-learning |
基金项目 国家自然科学基金项目(61673280, 61104093, 61525302, 61333012, 61304028, 61590922, 61503257), 流程工业综合自动化国家重点实验室开放课题(PAL-N201603),辽宁省高等学校杰出青年学者成长计划(LJQ2015088),辽宁省自然科学基金(2015020164, 2014020138)资助. |
|
中文摘要 |
现代工业过程机理复杂使得很难对生产过程以及运行指标与被控变量之间关系精确建模. 如何基于工业
运行过程数据信息, 不依赖模型参数给出设定值设计方案,优化运行指标是一挑战性难题.本文针对在稳态附近可
以线性化的一类工业过程, 考虑运行控制环和底层控制环不同时间尺度,提出一种基于Q--学习方法的次优设定值
学习算法. 此算法完全利用数据, 学习得到次优设定值, 实现运行指标以次优的方式跟踪理想值. 浮选过程仿真结
果表明本文所提方法的有效性. |
英文摘要 |
It is dif?cult to accurately model productive processes and describe relationship between operational indices
and controlled variables for modern industrial processes. How to design the setpoints by using only data generated by op-
erational processes for optimizing operational indices, without requiring the knowledge of model parameters of operational
processes, poses a challenge on operational optimization control. This paper focuses on a class of industrial processes that
can be linearized near the steady states and take different time scales adopted in the operational control loop and process
control loop into account. In this context, a Q--learning based suboptimal setpoint learning algorithm is proposed to learn
suboptimal setpoints by utilizing only data, such that the operational indices can track the desired values in an suboptimal
manner. A simulation experiment in ?otation process is implemented to show the effectiveness of the proposed method. |
|
|
|
|
|