引用本文: | 薛磊,王庆领,孙长银.博弈论框架下的二阶多智能体系统领导者选择算法[J].控制理论与应用,2016,33(12):1593~1602.[点击复制] |
XUE Lei,WANG Qing-ling,SUN Chang-yin.Game theoretical approach for the leader selection of the second-order multi-agent system[J].Control Theory and Technology,2016,33(12):1593~1602.[点击复制] |
|
博弈论框架下的二阶多智能体系统领导者选择算法 |
Game theoretical approach for the leader selection of the second-order multi-agent system |
摘要点击 3582 全文点击 2460 投稿时间:2016-06-30 修订日期:2016-10-12 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2016.60462 |
2016,33(12):1593-1602 |
中文关键词 超模博弈 多智能体系统 领导者选取 |
英文关键词 supermodular game multi-agent system leader selection |
基金项目 国家自然科学基金项目(61503079, 61520106009, 61533008), 省自然科学基金项目(BK20150625), 江苏高校优势学科建设工程资助项目, 复杂工程系统测量与控制教育部重点实验室(MCCSE2015B02), 江苏省研究生创新基金项目(CXLX1309)资助. |
|
中文摘要 |
随着人工智能的发展,多智能体系统中智能体的异质性、工作环境的复杂性、系统目标的多样性, 给多智
能体系统动态性能的分析带来了挑战.同时,也催生了新的控制策略和优化方法. 博弈论作为一种研究社会系统中
智能体决策过程的经典工具,如今已被应用到了多智能体系统研究领域.本文主要针对二阶多智能体系统编队过程
中领导者选取的两类问题: 1) 选取k个领导者使系统误差达到最小; 2) 系统误差在一定范围内, 选取最小数量的领
导者; 提出了一类超模博弈建模方法. 在建模过程中设计了各个智能体的效用函数与系统整体的目标函数,使各个
智能体在寻求各自效用函数最大化的过程中实现整体目标. 而后, 运用贪婪算法优化了智能体决策过程. 本文分析
了所建模型的平衡点存在性和系统稳定性. 最后, 利用仿真实例对比说明了本文提出的基于超模博弈的二阶多智
能体系统领导者选择算法的有效性. |
英文摘要 |
With the development of the arti?cial intelligence, the features of Multi-agent System (MAS), such as het-
erogeneous agents, complex environment, and objective variety, bring challenges for analysis the dynamics of the system.
Therefore, new control policies and optimization methods are required to deal with the challenges. Game theory which is
a classic tool for studying the decision making processes of the agents in social system is rising as a meaningful method
for analyzing the dynamics of the MAS. Two kinds of leader selection problems which exist in the formation of second-
order MAS are discussed. The supermodular game is introduced to model two kinds of leader selection problems, namely,
the problem of selecting a ?xed number of leaders in order to minimize the convergence error, as well as the problem of
selecting the minimum-size set of leader agents to achieve a given bound on the convergence error. As to the designed
supermodular game theoretical model, the utility functions and objective functions of the agents are designed. The global
objective function can be achieved by maximizing utility function of the agents. Moreover, the greedy algorithm is pro-
posed to optimize the decision making processes of the agents. The analytical properties of the designed model are also
discussed. Simulation examples are provided to illustrate the effectiveness of the designed game theoretical model. |
|
|
|
|
|