引用本文:施敏杰,黄俊,陈良,韩正之.单边Lipschitz的Lur’e型微分包含系统的非脆弱同步设计[J].控制理论与应用,2017,34(12):1654~1661.[点击复制]
SHI Min-jie,HUANG Jun,CHEN Liang,HAN Zheng-zhi.Design of non-fragile synchronization of one-sided Lipschitz Lur’e differential inclusion system[J].Control Theory and Technology,2017,34(12):1654~1661.[点击复制]
单边Lipschitz的Lur’e型微分包含系统的非脆弱同步设计
Design of non-fragile synchronization of one-sided Lipschitz Lur’e differential inclusion system
摘要点击 2553  全文点击 1933  投稿时间:2016-07-27  修订日期:2017-07-17
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2017.60555
  2017,34(12):1654-1661
中文关键词  微分包含  单边Lipschitz  同步  非脆弱
英文关键词  differential inclusion  one-sided Lipschitz  synchronization  non-fragile
基金项目  国家自然科学基金项目(61403267, 21206100), 江苏省自然科学基金项目(BK20130322), 江苏省高校自然科学基金项目(13KJB510032), 中国博士 后科学基金项目(2017M611903)
作者单位E-mail
施敏杰 苏州大学机电工程学院 roylist@163.com 
黄俊* 苏州大学机电工程学院 cauchyhot@163.com 
陈良 苏州大学机电工程学院  
韩正之 上海交通大学电子信息与电气工程学院  
中文摘要
      本文针对单边Lipschitz 的Lur’e 型微分包含系统提出了一种非脆弱同步设计方法. 首先, 本文给出了单边 Lipschitz 的Lur’e 型微分包含系统的主系统和从系统的数学模型以及相关的假设条件, 并简要回顾了单边Lipschitz 函数的概念及性质. 随后, 基于系统的输出, 设计了能使误差系统渐近稳定的非脆弱控制器, 同时指出设计该类控 制器的必要性. 最后, 以转子系统为实际背景, 借助Scilab给出了线性矩阵不等式和线性矩阵等式的混合问题的可 行解, 并利用Simulink进行了数值仿真, 仿真结果验证了非脆弱控制器的有效性.
英文摘要
      This paper proposes a design method for non-fragile synchronization of one-sided Lipschitz Lur’e differential inclusion system. Firstly, mathematical models of master system and slave system as well as some related assumptions are presented. Both the definitions and properties of one-sided Lipschitz functions are also introduced briefly. Then, based on the output, a non-fragile controller is designed to make the error system asymptotically stable. The necessity of designing this controller is also stated. Finally, the rotor system is considered as an example and then simulated by Simulink. The simulation results show the effectiveness of the proposed non-fragile controller by using Scilab which provides the feasible solution for mixed problem of the linear matrix inequality and linear matrix equality.