引用本文: | 邹奎,苟兴宇,范达.含多正弦扰动的航天器无拖曳控制系统性能极限研究[J].控制理论与应用,2017,34(4):449~456.[点击复制] |
ZOU Kui,Gou Xingyu,FAN Da.Performance limitations for spacecraft drag-free control system in the presence of multi-sinusoidal disturbance[J].Control Theory and Technology,2017,34(4):449~456.[点击复制] |
|
含多正弦扰动的航天器无拖曳控制系统性能极限研究 |
Performance limitations for spacecraft drag-free control system in the presence of multi-sinusoidal disturbance |
摘要点击 2716 全文点击 2387 投稿时间:2016-08-03 修订日期:2016-12-28 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2017.60580 |
2017,34(4):449-456 |
中文关键词 无拖曳控制 谱分解 Wiener-Hopf 指标分解 |
英文关键词 drag-free control spectral decomposition Wiener-Hopf performance budgeting |
基金项目 国家自然科学基金项目(51505472) |
|
中文摘要 |
本文研究了航天器无拖曳控制系统的性能极限问题. 将空间环境扰动描述为一个阶跃分量、一个平稳随机分量和多个正弦分量的线性组合, 利用残余非保守力的稳态方差度量扰动抑制性能, 并运用Wiener-Hopf设计方
法求解最小灵敏度函数. 为确保残余非保守力的渐近平稳性, 将最小灵敏度函数表示为反馈系统的频域拓扑结构,并推导了闭环系统的极限指标. 结合无拖曳控制指标, 讨论了加速度计模式下的传感器、执行器的指标分解问题. |
英文摘要 |
This paper is to contribute to the understanding of performance limitations for spacecraft drag-free control system. Environmental disturbance is modeled as a linear combination of a step component, a stationary stochastic component and several sinusoids with different frequencies. Disturbance rejection is measured by the steady-state variance of the residual non-gravitational force, and Wiener-Hopf design method is used to solve the minimizing sensitivity function. To guarantee the asymptotic stationary of the residual non-gravitational force, the minimizing sensitivity function accounting for the toplogical structure of the feedback system is used to derive the limiting performance. By using the drag-free control requirement, performance budgeting of actuator and sensor in accelerometer mode are discussed. |