引用本文:冒建亮,李奇,朱海荣.多源扰动下光电跟踪系统连续非奇异终端滑模控制[J].控制理论与应用,2017,34(4):413~423.[点击复制]
MAO Jian-liang,LI Qi,ZHU Hai-rong.Continuous nonsingular terminal sliding mode control of optical-electronic tracking system subject to multiple disturbances[J].Control Theory and Technology,2017,34(4):413~423.[点击复制]
多源扰动下光电跟踪系统连续非奇异终端滑模控制
Continuous nonsingular terminal sliding mode control of optical-electronic tracking system subject to multiple disturbances
摘要点击 3194  全文点击 2667  投稿时间:2016-09-30  修订日期:2017-02-13
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2017.60726
  2017,34(4):413-423
中文关键词  有限时间扰动观测器  连续非奇异终端滑模  幂次趋近律  光电跟踪系统
英文关键词  finite-time disturbance observer  continuous nonsingular terminal sliding mode  power reaching law  optical-electronic tracking system
基金项目  国家国际科技合作专项(2015DFA10490), 国家自然科学基金项目(51307089), 中央高校基本科研业务费专项资金, 江苏省普通高校研究生科 研创新计划项目(KYLX15 0213)
作者单位E-mail
冒建亮* 东南大学自动化学院 mjl@seu.edu.cn 
李奇 东南大学自动化学院  
朱海荣 南通大学电气工程学院  
中文摘要
      针对多源扰动下的光电跟踪系统, 提出一种基于有限时间扰动观测器的连续非奇异终端滑模控制方法. 首先, 通过扰动观测器在有限时间内估计出集总扰动并用于快速幂次趋近律的设计, 利用非奇异快速终端滑模面和等效控制方法, 得出连续有限时间控制律. 采用Lyapunov 稳定性方法进行了严格的有限时间收敛证明. 其次, 对2–DOF光电跟踪系统进行建模, 分析影响控制精度的多源干扰因素, 并进行控制律设计. 最后, 结合实际工作环境进行仿真与实验研究, 论证算法的有效性. 结果表明, 提出的控制方法可使得系统输出即使在多源扰动存在情况下,也可在有限时间内快速收敛到平衡点, 提高了光电跟踪系统的抗干扰能力与稳态控制精度.
英文摘要
      A continuous nonsingular terminal sliding mode control method based on finite-time disturbance observer is put forward for the optical-electronic tracking system subject to multiple disturbances. First, a finite-time disturbance observer is designed to estimate the lumped uncertainty, which is used for the fast power exponential reaching law design.Combining with the nonsingular fast terminal sliding mode and equivalent control method, the continuous finite-time control law is derived. By using Lyapunov stability theory, the rigorous finite-time convergence proof is given. Second, 2–DOF optical-electronic tracking system is modeled and the multiple interference factors influencing the control precision are analyzed. Then, the control law design is implemented based on the proposed method. Finally, the comparative simulations and experiments are performed to verify the effectiveness of the proposed method according to the practical working environment. It is shown that the system output can converge to the equilibrium point in finite time even in the presence of multiple disturbances with the proposed method such that the disturbance rejection ability and control precision are improved.