引用本文: | 周远,胡核算,刘杨,林尚威.分布式多机器人运动控制的离散事件系统方法[J].控制理论与应用,2018,35(1):110~120.[点击复制] |
ZHOU Yuan,HU He-suan,LIU Yang,LIN Shang-wei.Distributed approaches to motion control of multiple robots via discrete event systems[J].Control Theory and Technology,2018,35(1):110~120.[点击复制] |
|
分布式多机器人运动控制的离散事件系统方法 |
Distributed approaches to motion control of multiple robots via discrete event systems |
摘要点击 3221 全文点击 2243 投稿时间:2016-12-04 修订日期:2017-07-27 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2017.60918 |
2018,35(1):110-120 |
中文关键词 多机器人系统 运动控制 离散事件系统 分布式算法 |
英文关键词 multi-robot systems motion control discrete event systems distributed algorithms |
基金项目 国家自然科学基金项目(61573265, 61203037, 51305321), 新加坡教育部Tier 1科研基金(2014–T1–001–147), 新加坡教育部Tier 2科研基金(MOE 2015–T2–2–049)资助. |
|
中文摘要 |
传统多机器人系统的运动控制主要依赖于机器人的动力学方程或运动学方程, 通过求解微分方程组来获
得机器人的输入控制信号. 随着系统中机器人数量的增加和运行环境的复杂化, 动力学方程很难描述多机器人系统
的运动行为, 且无法很好地解决诸如死锁等逻辑故障. 本文简略综述了国内外的研究现状, 重点介绍笔者所在研究
组开展的关于离散事件系统方法在多机器人运动控制方面的应用性研究工作. 其动机在于: 1) 基于离散事件系统
方法的运动控制能够有效地解决系统运行过程中产生的诸如死锁等逻辑故障. 首先, 利用离散事件系统模型对多
机器人系统的运动进行建模, 从而降低计算复杂性; 其次, 基于所得离散事件系统模型, 设计分布式安全运动控制算
法, 使各个机器人可以自主地、无碰撞地、无死锁地运动; 设计分布式鲁棒运动控制算法, 使得失效的机器人对系统
的影响最小. 2) 基于离散事件系统方法的运动控制策略可以结合传统的基于运动学方程的运动控制方法, 从而使
系统不但能够避免顶层的逻辑故障, 而且能够确定机器人执行器的输入信号. |
英文摘要 |
Classical motion control of multi-robot systems is dependent on the dynamic or kinematic equations, where
the input control signals for robots are obtained by solving a set of differential equations. With the increase of the number
of robots in a system and the more complexity of environment, it is hard to describe the behavior of robots exactly by
only applying the dynamic equations and cannot deal well with some logical problems, such as deadlocks. This paper
summarizes the state-of-the-art motion control technologies, especially emphasizes our research work with regard to the
application of discrete event systems (DESs) on the motion control of multi-robot systems. The motivations are as follows.
1) DES-based motion control can deal with the logical problems, such as deadlocks, during the evolution of the system.
First, use the DES models to formalize the motion of a multi-robot system; this can reduce the computation complexity.
Second, based on the DES models, design distributed safe control algorithms for robots to avoid collisions and deadlocks,
as well as guarantee that they can move independently; design distributed robust control algorithms such that the failures of
robots have the least detrimental effect on the system. 2) DES-based motion control can be combined with the kinematic
equation-based motion control such that the system can not only resolve high-level logical problems but also determine the
input signals of the actuators of robots. |
|
|
|
|
|