引用本文: | 肖佳平,蒋建春,佘春东.新息序列驱动的无人机控制系统数据攻击检测[J].控制理论与应用,2017,34(12):1575~1582.[点击复制] |
XIAO Jia-ping,JIANG Jian-chun,SHE Chun-dong.Data attack detection for an unmanned aerial vehicle control system using innovation sequences[J].Control Theory and Technology,2017,34(12):1575~1582.[点击复制] |
|
新息序列驱动的无人机控制系统数据攻击检测 |
Data attack detection for an unmanned aerial vehicle control system using innovation sequences |
摘要点击 3186 全文点击 1683 投稿时间:2017-01-20 修订日期:2017-08-14 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2017.70053 |
2017,34(12):1575-1582 |
中文关键词 无人机 信息物理系统 入侵检测 网络安全 |
英文关键词 unmanned aerial vehicle cyber-physical system intrusion detection network security |
基金项目 国家自然科学基金项目(91438120), 广西壮族自治区教育厅符号计算与工程数据处理重点实验室开发课题(FH201504) |
|
中文摘要 |
伴随物联网和自主系统的不断发展, 信息物理系统的网络安全备受关注. 无人机是一种典型的依靠通信和
控制系统实现自主飞行的智能装置, 其安全性尤为突出. 本文针对无人机的状态估计算法, 考虑其传感器和控制指
令受到数据攻击, 提出基于扩展卡尔曼滤波的新息序列状态估计检测方法. 首先建立无人机信息物理模型, 引入状
态估计算法和数据攻击模型. 然后, 利用新息序列构造标量检测统计量用于数据攻击检测, 并针对飞行器机动造成
的状态跳变引入负无穷范数, 用以降低数据攻击检测的误检率. 最后, 通过仿真实验验证所提出的检测方法能有效
检测不同威胁模式下和状态下无人控制系统的数据攻击. |
英文摘要 |
With rapid advances in the fields of the Internet of things and autonomous systems, the network security of
cyber-physical systems has attracted considerable attention. An unmanned aerial vehicle (UAV) is an intelligent device that
relies on information communication and flight control systems to achieve autonomous flight. Consequently, its security
is extremely important. This study proposes a new state estimation method that uses innovation sequences based on an
extended Kalman filter for the detection of data attacks on a UAV. Our method can identify data attacks on tensors and
control commands. First, a cyber-physical system model for a UAV is established, and the state estimation algorithm and
data attack model are introduced. Then, a scalar detection statistic is constructed for data attack detection using innovation
sequences, and the minus infinity norm method is introduced to reduce the false detection of data attacks while the aircraft
is being maneuvered. Finally, simulation results show that the proposed detection method can effectively detect various
threat patterns under a variety of circumstances for unmanned control systems. |
|
|
|
|
|