引用本文:朱强,邵之江,宋征宇.多引力场小推力引力借力轨道设计与优化[J].控制理论与应用,2018,35(6):741~750.[点击复制]
ZHU Qiang,SHAO Zhi-jiang,SONG Zheng-yu.Design and optimization of low-thrust gravity-assist trajectory in multi gravitational fields[J].Control Theory and Technology,2018,35(6):741~750.[点击复制]
多引力场小推力引力借力轨道设计与优化
Design and optimization of low-thrust gravity-assist trajectory in multi gravitational fields
摘要点击 3235  全文点击 1248  投稿时间:2017-04-01  修订日期:2017-12-05
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2017.70219
  2018,35(6):741-750
中文关键词  多引力场  小推力引力借力  最优控制系统  联立求解  Radau伪谱法  网格生成
英文关键词  multi gravitational fields  low-thrust gravity-assist  optimal control systems  simultaneous solution  Radau pseudospectral method  mesh generation
基金项目  国家自然科学基金项目(61773341), 国家重点实验室自主课题(ICT1804), 一院高校创新联合基金项目(CALT201603), 装备预先研究项目(305060 30302)资助.
作者单位E-mail
朱强 浙江大学控制科学与工程学院 568414010@qq.com 
邵之江* 浙江大学控制科学与工程学院 szj@zju.edu.cn 
宋征宇 北京航天自动控制研究所  
中文摘要
      采用序贯法设计优化小推力引力借力轨道(low-thrust gravity-assist, LTGA)时, 设计步骤复杂且优化结果最 优性条件难以保证. 本文提出一种多引力场LTGA问题联立求解框架. 首先对多引力场环境和探测器动力学模型进 行统一描述和处理. 设计初始化策略, 利用Radau伪谱法将发射窗口、借力顺序、初始轨道搜索以及轨道优化联立求 解, 简化设计步骤. 利用hp自适应网格精细化策略保证优化结果最优性条件. 该联立框架用于求解地木转移任务, 得到地球–火星–地球–木星的转移方案. 本文提出的联立求解框架, 简化了设计步骤, 保证了优化结果的最优性条 件, 得到比序贯求解更优的转移方案.
英文摘要
      When low-thrust gravity-assist (LTGA) problems are designed and optimized with the sequential method, the design and optimization procedure is complex and the optimality conditions of the optimization results are difficult to be satisfied. This paper proposes a simultaneous framework of LTGA problems solving strategy in the multi gravitational fields. First, dynamic model of the probe as well as the multi gravitational fields are handled together in this method. An initialization strategy is designed and the launch window, gravity-assist scheme, initial orbit search, and trajectory optimization are solved in the simultaneous framework with the Radau pseudospectral method, which simplifies the design procedure of LTGA problems. An hp-adaptive mesh refinement strategy is utilized to satisfy the optimality conditions by adjusting the number of mesh and the order of the Lagrange Polynomial. The simultaneous framework is applied to solve the transfer mission from Earth to Jupiter and the transfer scheme of Earth-Mars-Earth-Jupiter is obtained. Simulation results show that the simultaneous framework of LTGA problems simplifies the LTGA design and optimization procedure, and guarantees the optimality conditions of the optimization results. Also a better transfer scheme is obtained comparing with the traditional sequential method.