引用本文:谢可心,杨春曦,刘华,黄凌云.卡尔曼一致性滤波器的丢包性能分析及能量优化[J].控制理论与应用,2018,35(8):1177~1185.[点击复制]
XIE Ke-xin,YANG Chun-xi,LIU Hua,HUANG Ling-yun.Packet-dropout performance and energy optimization of the distributed Kalman consensus filter[J].Control Theory and Technology,2018,35(8):1177~1185.[点击复制]
卡尔曼一致性滤波器的丢包性能分析及能量优化
Packet-dropout performance and energy optimization of the distributed Kalman consensus filter
摘要点击 3219  全文点击 1398  投稿时间:2017-06-26  修订日期:2018-03-06
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2018.70430
  2018,35(8):1177-1185
中文关键词  无线传感器网络  卡尔曼滤波器  一致性算法  网络丢包  逾渗模型  能量消耗
英文关键词  wireless sensor networks  distributed Kalman filter  consensus algorithm  packet loss  percolation model  energy consumption
基金项目  国家自然科学基金资助(61364002,61471163).
作者单位邮编
谢可心 昆明理工大学化学工程学院 650500
杨春曦* 昆明理工大学化学工程学院 650500
刘华 昆明理工大学化学工程学院 
黄凌云 省部共建复杂有色金属资源清洁利用国家重点实验室昆明理工大学 云南 昆明 
中文摘要
      针对无线传感器网络(wireless sensor networks, WSNs)在实际应用中不可避免的数据包丢失现象, 本文研究 了分布式卡尔曼一致性滤波算法(distributed Kalman consensus filtering algorithm, DKF)在两类丢包情况下的稳定性 和滤波性能问题, 通过矩阵论理论分析得出了估计误差协方差收敛所能容忍的极限丢包率. 然后, 考虑到传感器节 点能量有限, 基于逾渗模型构建了一种能量可调的改进型分布式一致性卡尔曼滤波器, 该滤波器充分利用无线传感 器节点冗余布置的特点, 以较小的滤波精度下降为代价, 获取网络寿命的大幅度提高, 实现了该分布式滤波器在滤 波精度与能量消耗两个关键指标的有效权衡. 最后利用仿真实例验证了所提出算法的有效性.
英文摘要
      Consider packet loss happens inevitably during data exchange in the practical applications of wireless sensor networks (WSNs), the stability and filtering performance of the distributed Kalman consensus filter (DKF) are discussed under two classes of packet dropout in this paper, including observation packet dropout and communication one. Though the matrix theoretic analysis, the upper limit of packet loss rate is derived for guarantee the convergence of estimation error covariance. Furthermore, consider sensor node has limited energy, an improved distributed Kalman consensus filter (IDKF) with adjustable energy consumption is proposed based on the percolation model. By full use of the characteristics of sensor node redundancy layout, the algorithm obtains longer network lifetime at the cost of less reducing filtering accuracy. So the filter achieves the effective trade-off between the two key indicators, including filtering accuracy and energy consumption. Finally, a simulation example is given to verify the effectiveness of the proposed two algorithms.