引用本文:殷红,董康立,彭珍瑞,李少远.引入Lévy flight和萤火虫行为的鱼群算法[J].控制理论与应用,2018,35(4):497~505.[点击复制]
YIN Hong,DONG Kang-li,PENG Zhen-rui,LI Shao-yuan.Fish swarm algorithm with Lévy flight and firefly behavior[J].Control Theory and Technology,2018,35(4):497~505.[点击复制]
引入Lévy flight和萤火虫行为的鱼群算法
Fish swarm algorithm with Lévy flight and firefly behavior
摘要点击 3529  全文点击 1451  投稿时间:2017-08-03  修订日期:2018-03-28
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2017.70550
  2018,35(4):497-505
中文关键词  人工鱼群算法  萤火虫算法  Lévy flight 搜索策略  行为模式
英文关键词  artificial fish-swarm algorithm  firefly algorithm  Lévy flight migration strategy  behavior pattern
基金项目  国家自然科学基金项目(61463028)资助.
作者单位E-mail
殷红 兰州交通大学 yinhong@mail.lzjtu.cn 
董康立 兰州交通大学  
彭珍瑞* 兰州交通大学 pzrui@163.com 
李少远 上海交通大学  
中文摘要
      针对人工鱼群算法(artificial fish-swarm algorithm,AFSA)和萤火虫算法(FA)在多维多极值函数寻优过程中易陷入局部最优和精度有待提 高等问题,提出基于萤火虫行为和Lévy flight 的鱼群算法(LFFSA)。该算法将萤火虫算法(firefly algorithm,FA)中萤火虫个体的移 动策略引入到鱼群的聚群、觅食两种行为模式中,进而将Lévy flight 引入到鱼群的搜索策略中,使得鱼群的搜索 更加高效。此外,采取一种基于动态参数的非线性变视野和变步长来限定鱼群的搜索范围。仿真分析表 明,LFFSA 较两种基本算法具有更好的全局搜索能力和寻优精度。
英文摘要
      Since the artificial fish-swarm algorithm(AFSA) and firefly algorithm(FA) are easily converging to local optimum and have low accuracy in the optimization process for solving multi-dimensional and multi-extreme value functions, an algorithm called Fish swarm algorithm with firefly behavior and Levy flight(LFFSA) is proposed, which introduces the migration strategy of firefly algorithm into the two behavior patterns of fish swarm as:the swarming and the preying behaviors. Furthermore, the Lévy flight is introduced into the search strategy. Besides, nonlinearity visual and step length based on dynamic parameter are simultaneously considered for limiting the search band. Simulation results demonstrate that the LFFSA has a better performance in convergence speed and optimization accuracy.