引用本文:方宇娟,魏韡,梅生伟,刘锋.考虑节点边际价格的热电联产机组主从博弈竞价策略[J].控制理论与应用,2018,35(5):682~687.[点击复制]
FANG Yu-juan,WEI Wei,MEI Sheng-wei,LIU Feng.Stackelberg game strategy for combined heat power unit considering locational marginal prices[J].Control Theory and Technology,2018,35(5):682~687.[点击复制]
考虑节点边际价格的热电联产机组主从博弈竞价策略
Stackelberg game strategy for combined heat power unit considering locational marginal prices
摘要点击 2463  全文点击 1291  投稿时间:2017-09-15  修订日期:2018-04-28
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2018.70669
  2018,35(5):682-687
中文关键词  热电耦合市场  节点边际热价  节点边际电价  主从博弈  热电联产机组
英文关键词  combined heat and electricity market  locational marginal heat price  locational marginal electricity price  Stackelberg game  combined heat and power unit
基金项目  国家自然科学基金项目(U1766203, 51621065)资助.
作者单位E-mail
方宇娟 清华大学电机工程与应用电子技术系 fyj16@mails.tsinghua.edu.cn 
魏韡 清华大学电机工程与应用电子技术系  
梅生伟* 清华大学电机工程与应用电子技术系  
刘锋 清华大学电机工程与应用电子技术系  
中文摘要
      本文构建了以热电联产机组(combined heat and power unit, CHP)、电力市场和热力市场为参与者的主从博 弈模型, 并基于电力市场中节点边际电价(locational marginal electricity price, LMEP)的概念, 提出了节点边际热价 (locational marginal heat price, LMHP)的概念. 在节点边际电价的求解中, 采用了支路潮流(branch power flow, BPF) 模型, 考虑了配电网中的网络损耗从而可以得到更精确的计算结果. 在节点边际热价的求解中, 考虑了管道热损耗, 并基于管道损耗方程分析了节点边际热价的分布规律. 在此基础上, 采用变步长迭代寻优算法求解热电联产机组、 电力市场、热力市场各自最优出力和最优报价策略. 最后, 通过一个6节点电网–4节点热网的算例对所构建的主从 博弈模型及热电联产机组的竞价策略进行了验证.
英文摘要
      Based on the concept of locational marginal electricity price (LMEP) in the electricity market, this paper proposes locational marginal heat price (LMHP). Then stackelberg game, whose participants are combined heat and power unit (CHP), electricity market and heat market, is established to solve the optimal bidding strategy of CHP in the combined heat and electricity market. Branch power flow (BPF) model is applied to obtain LMEPs. The power loss is considered in the district electricity network to calculate LMEPs accurately. Meanwhile, the heat loss is regarded in the solution of LMHPs. And the distribution law of LMHPs are analyzed based on the pipe heat loss functions. In this paper, a variablestep iterative optimization algorithm is introduced to solve the optimal generation and optimal bidding strategies for CHP, electricity market and heat market. Finally, a 6-node electrical 4-node heat network is presented in the case study to verify the stackelburg models and optimal bidding prices for CHPs.