引用本文: | 陈春林.基于量子系综分类的量子系统哈密顿量辨识[J].控制理论与应用,2017,34(11):1460~1464.[点击复制] |
CHEN Chun-lin.Hamiltonian identification for quantum systems via quantum ensemble classification[J].Control Theory and Technology,2017,34(11):1460~1464.[点击复制] |
|
基于量子系综分类的量子系统哈密顿量辨识 |
Hamiltonian identification for quantum systems via quantum ensemble classification |
摘要点击 2351 全文点击 1624 投稿时间:2017-10-17 修订日期:2017-12-15 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2017.70747 |
2017,34(11):1460-1464 |
中文关键词 量子系综分类 哈密顿量辨识 基于采样的学习控制 量子学习控制 |
英文关键词 quantum ensemble classification Hamiltonian identification sampling-based learning control quantum learning control |
基金项目 国家重点研发计划(2016YFD0702100), 国家自然科学基金项目(61273327) |
|
中文摘要 |
针对量子系统中的哈密顿量辨识问题, 提出了一种基于量子系综分类的量子系统参数辨识方法. 首先, 所
采用的量子系综分类方法结合了基于采样的学习控制方法和梯度流算法, 可利用所设计的控制场有效区分具有不
同哈密顿量参数的量子系统; 其次, 以交叉验证的方式对于所需估计的哈密顿量参数值进行区间判定, 提高估计可
靠性; 再次, 采用逐次细化判定区间的方法, 辨识出最终的哈密顿量参数; 最后, 通过数值仿真验证了所提出的量子
系统哈密顿量辨识方法的有效性和实用性. |
英文摘要 |
In this paper, a hamiltonian identification approach is proposed for quantum systems using quantum ensemble
classification. First, the quantum ensemble classification method is introduced by combining sampling-based learning
control and gradient flow algorithms, which helps discriminate different quantum systems whose hamiltonian parameters
falling in different intervals, respectively. Second, the intervals for the parameters to be identified are estimated via cross
verification to achieve a reliable result. Third, the hamiltonian parameters are identified by successively refining the estimated
intervals. Finally, the effectiveness and practicability of the proposed hamiltonian identification approach is verified
using numerical simulation. |
|
|
|
|
|