引用本文:那文波,高宇,李明,刘甜甜.定值和随动单闭环系统传感器故障诊断[J].控制理论与应用,2020,37(9):2054~2060.[点击复制]
NA Wen-bo,GAO Yu,LI Ming,LIU Tian-tian.Sensor fault diagnosis of fixed value and servo single closed-loop system[J].Control Theory and Technology,2020,37(9):2054~2060.[点击复制]
定值和随动单闭环系统传感器故障诊断
Sensor fault diagnosis of fixed value and servo single closed-loop system
摘要点击 1869  全文点击 629  投稿时间:2019-03-25  修订日期:2020-08-08
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2020.90183
  2020,37(9):2054-2060
中文关键词  动态特性  传感器  故障诊断  一阶定值系统  一阶随动系统
英文关键词  dynamic characteristics  sensor  fault diagnosis  first-order fixed value system  first-order servo system
基金项目  浙江省自然科学基金委公益技术应用工业领域项目(LGG20F030005)资助.
作者单位E-mail
那文波 中国计量大学 hznwb@163.com 
高宇* 中国计量大学 13614788263@163.com 
李明 中国计量大学  
刘甜甜 中国计量大学  
中文摘要
      在线闭环系统传感器的故障, 由于控制器的调节作用, 使得其故障诊断变得复杂. 本文针对定值和随动单 闭环系统传感器故障, 在正常系统和故障系统动态特性分析基础上, 提出了一种基于系统动态趋势和数据驱动的故 障诊断方法. 该方法利用动态窗口残差数据实现故障监测; 以数据变化最大值实现故障估计; 采用二次线性回归实 现故障分离; 建立了系统故障监测、故障估计和故障分离的静态模型; 同时给出了诊断模型在线应用的标定方法和 诊断流程. 通过实验验证了方法的有效性和诊断的高精度. 该方法适用于一般的一阶定值和随动闭环控制系统传 感器的实时故障诊断.
英文摘要
      The fault of the sensor in the online closed-loop system is complicated due to the adjustment of the controller. Based on the analysis of dynamic characteristics of normal system and fault system, this paper proposes a fault diagnosis method based on dynamic trend and data-driven for sensor fault of fixed value and servo single closed-loop system. The method uses dynamic window residual data to implement fault monitoring; the maximum value of data changes is used to implement fault estimation; quadratic linear regression is used to implement fault separation; a static model of system fault monitoring, fault estimation, and fault separation is established. Meanwhile, the calibration method and diagnosis flow of online application of diagnosis model are given. The validity of the method and the high accuracy of diagnosis are verified by experiments. The method is suitable for real-time fault diagnosis of general first-order fixed value and servo closed-loop control system sensors.