引用本文: | 陈斌,焦琳青,杨亚磊,张洋,王立文.复杂多约束条件下航班除冰延误机理及资源优化配置[J].控制理论与应用,2020,37(5):1069~1075.[点击复制] |
CHEN Bin,JIAO Lin-qing,YANG Ya-lei,ZHANG Yang,WANG Li-wen.Flight deicing delay mechanism and resource optimization configuration under complex and multiple constraints[J].Control Theory and Technology,2020,37(5):1069~1075.[点击复制] |
|
复杂多约束条件下航班除冰延误机理及资源优化配置 |
Flight deicing delay mechanism and resource optimization configuration under complex and multiple constraints |
摘要点击 1922 全文点击 741 投稿时间:2019-05-30 修订日期:2019-09-29 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2019.90408 |
2020,37(5):1069-1075 |
中文关键词 除冰延误 资源配置 复杂多约束 粒子群算法 多属性决策 |
英文关键词 deicing delay resource allocations complex multi-constraint particle swarm optimization algorithm multiple attribute decision |
基金项目 科技部科技支撑计划项目子课题项目(2012BAG04B02), 国家自然科学基金委员会— 中国民航局民航联合研究基金项目(U1933107)资助. |
|
中文摘要 |
针对机场除冰运行存在的除冰航班延误频发、除冰资源使用粗放的问题, 提出了考虑航班延误机理的除
冰资源优化配置方法. 研究了多参数综合影响的除冰效率及航班动态随机环境下的除冰排队延误机理. 分析了除
冰运行过程的复杂多约束条件, 构建了以最小化除冰液消耗、除冰车需求和除冰延误架次为目标的飞机除冰资源
多目标优化配置模型. 利用自适应网格多目标粒子群算法求解模型并提出了基于多属性决策优化的除冰资源优化
配置方法. 除冰资源优化配置后除冰液消耗量、除冰车需求量、除冰延误架次相较于优化前分别降低了13.9%,
12.8%, 19.3%. 该方法为机场除冰运行资源优化提供了新思路. |
英文摘要 |
Aiming at the frequent delays of deicing flights and extensive use of deicing resources in airport deicing
operation, an optimal allocation method of deicing resources considering flight delay mechanism is proposed. The deicing
efficiency affected by multi-parameters and the deicing queuing delay mechanism under dynamic random flight environment
are studied. The complex multi-constraints of deicing operation are analyzed, and a multi-objective optimal allocation
model of aircraft deicing resources is established, which aims at minimizing deicing fluid consumption, deicing vehicle
demand and delays of de-icing flights. An adapt grid algorithm based on multi-objective particle swarm optimization
(AGA–MOPSO) is used to solve the model and an optimal allocation method of de-icing resources based on multi-attribute
decision optimization is proposed. After optimizing the allocation of deicing resources, the deicing fluid consumption,
deicing vehicle demand and de-icing flight delay were reduced by 13.9%, 12.8% and 19.3% respectively compared with
those before optimization. This method provides a new idea for the optimization of airport deicing operation resources. |
|
|
|
|
|