引用本文:徐薇,陈虹,赵海艳.考虑电池寿命的四轮轮毂电动汽车制动能量优化控制[J].控制理论与应用,2019,36(11):1942~1951.[点击复制]
XU Wei,CHEN Hong,ZHAO Hai-yan.Braking energy optimization control for four in-wheel motors electric vehicles considering battery life[J].Control Theory and Technology,2019,36(11):1942~1951.[点击复制]
考虑电池寿命的四轮轮毂电动汽车制动能量优化控制
Braking energy optimization control for four in-wheel motors electric vehicles considering battery life
摘要点击 2488  全文点击 926  投稿时间:2019-07-06  修订日期:2019-10-14
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2019.90532
  2019,36(11):1942-1951
中文关键词  电动汽车  制动能量优化  电池寿命  力矩分配
英文关键词  electric vehicles  braking energy optimization  battery life  torque distribution
基金项目  国家自然科学基金
作者单位E-mail
徐薇 吉林大学通信工程学院 15943059791@126.com 
陈虹* 吉林大学通信工程学院  
赵海艳 吉林大学通信工程学院  
中文摘要
      制动能量回收系统能够将动能转化为电能存储到电池中,从而有效提高电动汽车的续驶里程,然而频繁 的制动会引起电池的频繁充电。电池寿命与其工作的外部环境有直接关系,如充放电倍率,电池剩余电量及工作 温度。单纯的制动能量回收并没有考虑回馈制动的时间点,时间长度和制动强度给电池寿命带来的影响,而这些 都是影响电池老化的不可忽略的因素。电动汽车制动过程具有电机制动和液压制动两种制动模式,本文针对制动 工况,对四轮轮毂电动汽车建立了制动模式下的能耗模型和电池寿命模型,设计了电机/液压制动模式协调优化 控制器,旨在同时兼顾电动汽车的能量回收与电池寿命的损耗。基于AMESim/Simulink 联合仿真平台对制动能 量回收给电池寿命带来的影响进行了仿真分析,并对所提出的控制策略进行了仿真验证,与未考虑电池寿命的策 略进行了对比,最后对不同的初始电池荷电状态和不同的制动强度对优化的影响进行了分析。
英文摘要
      The braking energy recovery system can convert kinetic energy into electrical energy and store it in the battery, which effectively improves the driving range of the electric vehicle. However, the frequent braking will cause the frequent charging of the battery. The external work environment of the battery, such as the charge and discharge rates, the battery State of Charge (SOC), and the work temperature are directly related to the battery life. The simple braking energy recovery system does not consider the impact of the regenerative braking time point and length and the braking strength on the battery aging, which shouldn’t be ignored. There are two braking modes in electric vehicle braking process: motor braking mode and hydraulic braking mode. In this paper, the energy consumption and recovery model and battery life depletion model of the braking process are established for the four in-wheel motors electric vehicle, a coordination and optimization controller of the two braking modes is designed to take into account both the energy recovery and the battery life. Based on AMESim/Simulink co-simulation platform, the simulations are carried out to analyse the impact of braking energy recovery on battery life first, then the proposed control method is verified compared with the strategy without considering battery life, finally the effects of the initial battery SOC and different braking strengths for the optimization are simulated and analyzed.