引用本文:程代展,刘泽群.有限博弈的矩阵半张量积方法[J].控制理论与应用,2019,36(11):1812~1819.[点击复制]
CHENG Dai-Zhan,LIU Ze-qun.Application of semi-tensor product of matrices to finite games[J].Control Theory and Technology,2019,36(11):1812~1819.[点击复制]
有限博弈的矩阵半张量积方法
Application of semi-tensor product of matrices to finite games
摘要点击 2522  全文点击 1131  投稿时间:2019-07-21  修订日期:2019-12-09
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2019.90595
  2019,36(11):1812-1819
中文关键词  矩阵半张量积, 有限博弈, 演化博弈, 势博弈, Shapley 值.
英文关键词  Semi-tensor product of matrices, finite game, evolutionary game, potential game, Shapley value.
基金项目  国家自然科学基金
作者单位E-mail
程代展* 中国科学院数学与系统研究院系统科学研究所 dcheng@iss.ac.cn 
刘泽群 中国科学院数学与系统研究院系统科学研究所  
中文摘要
      矩阵半张量积被广泛地应用在有限博弈的研究中, 例如: (1) 演化博弈; (2) 势博弈; (3) 有限博弈的向量空间分解; (4) 基于势博弈的优化与控制; (5) 合作博弈等. 本文的目的, 就是对上述各种应用做一个全面的介绍, 包括其原理、主要成果、以及尚待解决的问题.
英文摘要
      Semi-tensor product of matrices has various applications for finite games, including (1) evolutionary game; (2) potential game; (3) vector space structure and decomposition of finite games; (4) potential-based optimization and control; (5) cooperative game, etc. The purpose of this paper is to provide a comprehensive introduction for the applications of semi-tensor product to finite games, including its principle, main results, and some faced challenging problems.