引用本文: | 鲜思东,李堂金.基于改进狼群算法的模糊时间序列预测模型[J].控制理论与应用,2020,37(7):1637~1643.[点击复制] |
XIAN Si-dong,LI Tang-jin.Fuzzy time series prediction model based on improved wolf pack algorithm[J].Control Theory and Technology,2020,37(7):1637~1643.[点击复制] |
|
基于改进狼群算法的模糊时间序列预测模型 |
Fuzzy time series prediction model based on improved wolf pack algorithm |
摘要点击 2202 全文点击 916 投稿时间:2019-08-09 修订日期:2020-03-20 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2019.90662 |
2020,37(7):1637-1643 |
中文关键词 模糊时间序列模型 狼群算法 划分 Alabama大学入学人数 预测 |
英文关键词 fuzzy time series model wolf pack algorithm division university of Alabama enrollments forecasting |
基金项目 重庆市质量技术监督局重大委托项目(CQZJZD2018001), 重庆市教委研究生教学改革研究项目(YJG183074), 重庆市社会科学规划项目(2018YB SH085), 重庆研究生科研创新项目(CYS18252), 国家自然科学基金项目(11671001)资助. |
|
中文摘要 |
当使用模糊时间序列预测模型进行预测时, 模糊区间的不同划分对最后的预测精度有着十分重要的影响.
针对如何更有效的划分模糊区间、进一步提高模糊时间序列的预测精度问题, 本文提出了一种基于改进狼群算法
的模糊时间序列预测模型. 为此首先简要介绍了模糊时间序列, 然后阐述了狼群算法并在其游走行为中引入趋向
行为和死亡概率对其进行了改进, 最后利用改进狼群算法来划分模糊区间, 建立了一种新的模糊时间序列预测模
型. 将Alabama大学入学人数作为实验数据进行实例分析和验证. 通过与现有的一些模型进行对比分析, 本文所提
模型具有更高的预测精度, 为模糊时间序列预测提供了新思路. |
英文摘要 |
The division of fuzzy interval plays a very important role to the final prediction accuracy when one uses
the fuzzy time series prediction model to prediction. In order to solve the problem of how to divide fuzzy interval more
effectively and further improve the prediction accuracy, a fuzzy time series prediction model based on improved wolf
pack algorithm is proposed in this paper. Firstly, the fuzzy time series is briefly introduced, then the wolf pack algorithm
is described and the chemotactic behavior and death probability are introduced into its scouting behavior to improve it.
Finally, using the improved wolf pack algorithm to divide the fuzzy interval, a new fuzzy time series prediction model is
established. The enrollments of university of Alabama is analyzed and verified as experimental data. By comparing the
forecasting results with some existing models, the proposed model has higher prediction accuracy and provides a new idea
for fuzzy time series prediction. |
|
|
|
|
|