引用本文:陈阳舟,黄小龙,詹璟原.不确定通信拓扑下多智能体系统鲁棒一致性[J].控制理论与应用,2020,37(8):1709~1716.[点击复制]
CHEN Yang-zhou,HUANG Xiao-long,ZHAN Jing-yuan.Robust consensus of multi-agent systems with uncertain communication topology[J].Control Theory and Technology,2020,37(8):1709~1716.[点击复制]
不确定通信拓扑下多智能体系统鲁棒一致性
Robust consensus of multi-agent systems with uncertain communication topology
摘要点击 2592  全文点击 1112  投稿时间:2019-11-07  修订日期:2020-02-08
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2020.90927
  2020,37(8):1709-1716
中文关键词  多智能体系统  通信不确定性  状态一致性  部分变元稳定性  分布式一致性协议
英文关键词  multi-agent systems  communication uncertain  state consensus  partial stability  distributed consensus protocol
基金项目  国家自然科学基金项目(61573030, 61803007)资助.
作者单位E-mail
陈阳舟 北京工业大学人工智能与自动化学院 yzchen@bjut.edu.cn 
黄小龙 北京工业大学人工智能与自动化学院  
詹璟原* 北京工业大学人工智能与自动化学院 jyzhan@bjut.edu.cn 
中文摘要
      本文研究一类具有通信不确定的多智能体系统鲁棒一致性问题. 本文提出基于标称通信拓扑有向生成树 的线性变换方法, 将线性多智能体系统的状态一致性问题转化为相应线性系统的鲁棒部分变元渐近稳定性问题. 首 先采用基于有向生成树关联矩阵的线性变换, 将多智能体系统网络的全局状态方程转化为一个降阶子系统; 其次, 将拉普拉斯矩阵的摄动部分进行分解, 利用降阶系统设计鲁棒二次镇定控制器, 推导出所有智能体状态达到渐近一 致的充分条件. 在此基础上将控制协议的参数设计转化为求解线性矩阵不等式的可行解. 最后, 通过数值仿真验证 了所提出的一致性协议分析与设计方法的可行性和有效性.
英文摘要
      Distributed robust consensus problem for a class of multi-agent systems (MASs) with uncertain communication topology is investigated. We propose a state linear transformation by constructing the incidence matrix of a directed spanning tree in the nominal communication topology, and transform the problem of state consensus of uncertain multiagent systems into the problem of robust partial asymptotic stability of corresponding linear systems. Firstly, we use the linear transformation constructed from a directed spanning tree to transform the closed uncertain MAS into a reduced-order system. Secondly, by using decomposition of perturbation Laplacian matrix, we design a quadratic stabilization robust controller for the reduced-order system, and derive a sufficient condition guaranteeing all agents’s states to achieve asymptotic consensus. Based on the condition, the design problem of protocol parameters is converted into finding the feasible solution of linear matrix inequalities. Finally, the effectiveness and feasibility of the proposed approach is verified by simulation examples.