引用本文: | 王宇奇,林麒,周磊,施昕昕,杜一君,乔贵方.基于局部模型逼近的一种绳牵引并联机器人 自适应径向基神经网络控制[J].控制理论与应用,2021,38(3):380~390.[点击复制] |
WANG Yu-qi,LIN Qi,ZHOU Lei,SHI Xin-xin,DU Yi-jun,QIAO Gui-fang.Adaptive radial basis function neural network control of a wire-driven parallel robot based on local model approximation[J].Control Theory and Technology,2021,38(3):380~390.[点击复制] |
|
基于局部模型逼近的一种绳牵引并联机器人 自适应径向基神经网络控制 |
Adaptive radial basis function neural network control of a wire-driven parallel robot based on local model approximation |
摘要点击 2122 全文点击 691 投稿时间:2020-04-08 修订日期:2020-10-01 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2020.00184 |
2021,38(3):380-390 |
中文关键词 绳牵引并联机器人 局部模型逼近 RBF神经网络 自适应控制 Lyapunov函数 |
英文关键词 wire-driven parallel robot local model approximation RBF neural network adaptive control Lyapunov function |
基金项目 国家自然科学基金项目(11472234), 南京工程学院高层次引进人才科研启动基金项目(YKJ201917)资助. |
|
中文摘要 |
为了保证风洞试验绳牵引并联机器人(WTT–WDPR)末端执行器的位姿, 提出了一种基于局部模型逼近的
自适应径向基(RBF)神经网络控制. 采用牛顿–欧拉法建立了飞机模型的动力学方程, 并基于动态力矩平衡方程建
立了驱动系统的动力学方程. 采用RBF神经网络进行了局部模型的逼近设计和控制律设计, 并通过构建Lyapunov函
数对系统进行了稳定性分析, 结果证明WTT–WDPR是趋于渐进稳定的. 对WTT–WDPR进行MATLAB/Simulink仿
真实验, 仿真结果验证了所设计的自适应RBF神经网络控制的正确性和可行性, 满足系统控制精度的要求, 也为在
样机上进行实际应用和技术实现奠定了理论基础. |
英文摘要 |
In order to ensure the pose of the end effector of wind tunnel test wire-driven parallel robot (WTT–WDPR),
an adaptive RBF neural network control based on local model approximation is proposed. The dynamic equation of the
aircraft model is established by Newton Euler method, and the dynamic equation of the driving system is established based
on the dynamic moment balance equation. In this paper, RBF neural network is used to design the approximation of local
model and control law, and Lyapunov function is constructed to analyze the stability of the system. The results show that
WTT–WDPR tends to be asymptotically stable. The WTT–WDPR is simulated by MATLAB/Simulink. The simulation
results verify the correctness and feasibility of the designed adaptive RBF neural network control, meet the requirements of
system control accuracy, and lay a theoretical foundation for practical application and technical realization on the prototype. |
|
|
|
|
|