引用本文: | 陈显锋,孙京诰,张海峰.在线场景更新的多阶段非线性模型预测聚合反应控制[J].控制理论与应用,2022,39(4):770~776.[点击复制] |
CHEN Xian-feng,SUN Jing-gao,ZHANG Hai-feng.Multi-stage nonlinear model predictive polymerization reaction control with online scenario update[J].Control Theory and Technology,2022,39(4):770~776.[点击复制] |
|
在线场景更新的多阶段非线性模型预测聚合反应控制 |
Multi-stage nonlinear model predictive polymerization reaction control with online scenario update |
摘要点击 1507 全文点击 589 投稿时间:2020-07-21 修订日期:2022-01-14 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2021.00472 |
2022,39(4):770-776 |
中文关键词 非线性模型预测控制 在线场景更新 贝叶斯概率加权 不确定性 半间歇聚合反应 |
英文关键词 NMPC online scenario update Bayesian probability weighting uncertainty semi-batch polymerization |
基金项目 国家自然科学青年基金项目(61803159)资助. |
|
中文摘要 |
针对聚合过程中时不变不确定性参数不能直接估计的情况, 导致的多阶段非线性模型预测控制中场景树
生成的合理性问题, 提出一种基于贝叶斯概率加权的在线场景更新算法. 该方法利用前一时间步中每个场景的模型
预测信息和过程状态测量信息计算对应场景的概率权重, 然后通过合适的自适应步长在线更新场景树中不确定性
的离散实现场景. 所提方法在保证过程约束满足的同时, 逐渐缩小不确定性集合逼近不确定性的真实值, 从而降低
保守性, 提升控制器性能. 通过多个批次的半间歇聚合反应过程实例仿真结果表明, 所提出的方法可以有效降低批
次反应时间, 提高生产效率. |
英文摘要 |
For the case where the time-invariant uncertainty parameter cannot be estimated directly in polymerization
process, an online scenario update algorithm based on Bayesian probability weighting has been proposed to generate
scenario trees in multi-stage nonlinear model predictive control (NMPC). The model prediction information and process
state measurement information of each scenario in the previous time step are used to calculate the probability weight of the
corresponding scenario. Then, using an appropriate adaptive step to update the uncertainty discrete scenario in the scenario
tree. While ensuring that the process constraints are met, the uncertainty set is gradually reduced to approach the actual
value of uncertainty, thereby reduce conservatism and improve controller performance. The simulation results of multiple
batches of semi-batch polymerization reaction process examples show that the proposed method can effectively reduce the
batch reaction time and improve the production efficiency. |