引用本文:罗家祥,许博喆,刘海明,蔡鹤,高焕丽,姚瞻楠.感知范围受限的群机器人自主围捕算法[J].控制理论与应用,2021,38(7):933~946.[点击复制]
LUO Jia-xiang,XU Bo-zhe,LIU Hai-ming,CAI He,GAO Huan-li,YAO Zhan-nan.Autonomous hunting algorithm for swarm robots subject to limited sensing range[J].Control Theory and Technology,2021,38(7):933~946.[点击复制]
感知范围受限的群机器人自主围捕算法
Autonomous hunting algorithm for swarm robots subject to limited sensing range
摘要点击 2606  全文点击 976  投稿时间:2020-10-15  修订日期:2021-06-13
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2021.00715
  2021,38(7):933-946
中文关键词  集群智能  自主机器人  简化虚拟速度模型  避撞
英文关键词  swarm intelligence  autonomous robots  simplified virtual velocity model  collision avoidance
基金项目  广东省科技厅基金项目(2020A1515011508, 2017A040405025), 中央高校基本科研业务费专项资金项目(2019MS140)资助.
作者单位E-mail
罗家祥 华南理工大学自动化科学与工程学院 luojx@scut.edu.cn 
许博喆 华南理工大学自动化科学与工程学院  
刘海明* 华南理工大学自动化科学与工程学院 hmliu@scut.edu.cn 
蔡鹤 华南理工大学自动化科学与工程学院  
高焕丽 华南理工大学自动化科学与工程学院  
姚瞻楠 华南理工大学自动化科学与工程学院  
中文摘要
      针对在有障碍物场地中感知范围受限的群机器人协同围捕问题, 本文首先给出了机器人个体、障碍物、目 标的模型, 并用数学形式对围捕任务进行描述, 在此基础上提出了机器人个体基于简化虚拟速度和基于航向避障的 自主围捕控制律. 基于简化虚拟速度模型的控制律使得机器人能自主地围捕目标同时保持与同伴的距离避免互撞; 基于航向的避障方法提升了个体的避障效率, 避免斥力避障方法导致的死锁问题. 其次本文证明了在该控制律下系 统的稳定性. 仿真结果表明, 该算法在有效围捕目标的同时能够高效地避开障碍物, 具有对复杂环境的适应性. 最 后本文分析了与其他方法相比该算法的优点.
英文摘要
      In order to solve the problem of cooperative hunting by swarm robots subject to limited perception range in an environment with obstacles, this paper firstly gives the models of the robots, obstacles, and targets, and describes the task in mathematical form. On this basis, an autonomous hunting control law based on simplified virtual velocity and heading based obstacle avoidance of robots is proposed. The control law based on the simplified virtual velocity model allows the robots to autonomously hunt the target and keep the distance with companions to avoid collision; heading-based obstacle avoidance improves the efficiency of individual obstacle avoidance, and avoids the deadlock problem caused by the repulsive obstacle avoidance method. In addition, this paper proves the stability of the system under this control law. The simulations show that this algorithm can efficiently avoid obstacles while effectively rounding up targets, adapted to complex environments. Finally, this paper analyzes the advantages of this algorithm compared to other methods.