引用本文: | 杨紫晴,姚加林,伍国华,陈学伟,毛成辉.集成协方差矩阵自适应进化策略与差分进化的优化算法[J].控制理论与应用,2021,38(10):1493~1502.[点击复制] |
YANG Zi-qing,YAO Jia-lin,WU Guo-hua,CHEN Xue-wei,MAO Cheng-hui.Ensemble optimization algorithm from covariance matrix adaptive evolution strategy and differential evolution[J].Control Theory and Technology,2021,38(10):1493~1502.[点击复制] |
|
集成协方差矩阵自适应进化策略与差分进化的优化算法 |
Ensemble optimization algorithm from covariance matrix adaptive evolution strategy and differential evolution |
摘要点击 3550 全文点击 984 投稿时间:2021-01-02 修订日期:2021-08-03 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2021.10002 |
2021,38(10):1493-1502 |
中文关键词 智能优化算法 差分进化 协方差矩阵自适应进化策略 算法集成 连续优化 |
英文关键词 intelligent optimization algorithm differential evolution covariance matrix adaptation evolution strategy ensemble algorithm continuous optimization |
基金项目 国家自然科学基金项目(62073341), 中南大学研究生自主探索创新项目(1053320190633)资助. |
|
中文摘要 |
不同智能优化算法在求解优化问题时通常表现出显著的性能差异. 差分进化(DE)算法具备较好的全局搜
索能力, 但存在收敛慢、效率低的不足, 协方差矩阵自适应进化策略(CMA–ES)局部搜索能力强, 具备旋转不变性,
但容易陷入局部最优, 因此, DE和CMA–ES之间具有潜在的协同互补能力. 针对上述问题, 提出了一种集成协方差
矩阵自适应进化策略与差分进化的优化算法(CMADE). 在CMADE框架中, DE算法负责全局搜索, CMA–ES算法进
行局部搜索. 通过周期性解交换机制实现CMA–ES和DE两个算法间协同交互和反馈控制. 在解交换时, 从DE种群
中选择优秀个体, 利用CMA–ES算法在优秀个体周围进行局部搜索. 同时在DE和CMA–ES的混合种群中, 综合考虑
解的多样性和最优性, 选取一定比例的解作为DE算法的新种群进行全局搜索, 实现全局搜索与局部搜索的动态平
衡. 将CMADE算法与CMA–ES, DE, SaDE, jDE, EPSDE, ACODE和SHADE算法在CEC2014标准测试集上进行比较
实验. 结果表明, CMADE整体性能显著优于其它比较算法. |
英文摘要 |
Different metaheuristic algorithms often show significant performance differences in solving optimization
problems. Differential evolution (DE) algorithm has a good global search ability, while it has disadvantages of slow convergence
speed and low efficiency. Covariance matrix adaptive evolution strategy (CMA–ES) has strong local search
capabilities and rotation invariance, but it is easy to fall into local optimum. Therefore, there is a potential synergy between
DE and CMA–ES. To address these problems, this paper proposes an integrated covariance matrix adaptive evolution strategy
and differential evolution optimization algorithm (CMADE). Under the framework of the CMADE, DE algorithm
is designed for global search, and CMA–ES algorithm is designed for local search. The two algorithms are integrated by
a periodic information exchange strategy to realize collaborative interaction and feedback control. During the information
exchange, the best individual is selected from the population of DE algorithm, then CMA–ES algorithm is used for local
search around the best individual. Considering the diversity and optimality of solutions, we choose a new population from
the mixed populations of DE and CMA–ES for global search , to realize the dynamic balance between global search and
local search. We conduct extensive experiments on the suit of CEC 2014 benchmark functions and comprehensive comparisons
with the seven algorithms including CMA–ES, DE, SaDE, jDE, EPSDE, ACODE and SHADE, which demostrates
the superiority of the proposed CMADE. |
|
|
|
|
|