引用本文:朱凤增,彭力.轮询通信协议下信息物理系统分布式状态估计[J].控制理论与应用,2022,39(10):1925~1936.[点击复制]
ZHU Feng-zeng,Peng Li.Distributed state estimation for cyber-physical systems under Round-Robin communication protocol[J].Control Theory and Technology,2022,39(10):1925~1936.[点击复制]
轮询通信协议下信息物理系统分布式状态估计
Distributed state estimation for cyber-physical systems under Round-Robin communication protocol
摘要点击 1639  全文点击 388  投稿时间:2021-07-14  修订日期:2022-04-14
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2022.10628
  2022,39(10):1925-1936
中文关键词  无线传感器网络  分布式滤波  切换拓扑  轮询协议
英文关键词  wireless sensor network  distributed filtering  switching topology  Round-Robin protocol
基金项目  国家自然科学基金(61873112)
作者单位E-mail
朱凤增 江南大学 zhufengzeng@jiangnan.edu.cn 
彭力* 江南大学 pengli0309@gmail.com 
中文摘要
      本文关注的是一类信息物理系统的分布式状态估计问题. 由于传感器网络通信带宽有限, 当大量节点同时发送数据时, 可能造成数据冲突. 因此, 通过引入轮询协议减轻传感器网络通信负担, 在该协议下每个节点的测量分量将依次且周期性访问网络. 考虑滤波网络拓扑切换概率矩阵是时变的, 因此采用非齐次Markov链描述随机拓扑切换行为. 证明了估计误差以指数衰减的形式收敛,确保了滤波误差系统在均方意义下最终有界. 进一步地, 通过解决特定拓扑依赖的凸优化问题, 获得期望的分布式滤波器参数. 最后, 通过两个例子证明了所设计的分布式状态估计方法的可行性.
英文摘要
      This paper is concerned with the problem of distributed state estimation for a class of cyber-physical systems. Since sensor networks have limited communication bandwidth, data conflicts may result when a large number of nodes send data at the same time. The Round-Robin protocol is introduced to ease the communication burden of the sensor network, where the measurement components of each node access the network sequentially and periodically. Considering that the topology switching probability matrices of the filtering network are time-varying, a non-homogeneous Markov chain is used to describe the stochastic topology switching behavior. It is shown that the estimation errors converge in an exponentially decaying form, which ensures that the estimation error system is eventually bounded in the mean square sense. Furthermore, the desired distributed filter parameters can be obtained by solving a specific topology-dependent convex optimization problem. Finally, the feasibility of the designed distributed state estimation method is demonstrated by two examples.