引用本文:王子赟,李南江,王艳,纪志成.基于凸空间收缩滤波的噪声不确定时滞系统状态估计[J].控制理论与应用,2022,39(12):2331~2339.[点击复制]
WANG Zi-yun,LI Nan-jiang,WANG Yan,JI Zhi-cheng.Convex space contraction filtering based state estimation for noise uncertainty time-delay systems[J].Control Theory and Technology,2022,39(12):2331~2339.[点击复制]
基于凸空间收缩滤波的噪声不确定时滞系统状态估计
Convex space contraction filtering based state estimation for noise uncertainty time-delay systems
摘要点击 1017  全文点击 345  投稿时间:2021-08-09  修订日期:2022-11-28
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2022.10729
  2022,39(12):2331-2339
中文关键词  凸空间  滤波  时滞系统  状态估计
英文关键词  convex space  filtering  time-delay systems  state estimation
基金项目  江苏省自然科学基金面上项目(BK20221533), 国家重点研发计划项目(2020YFB1710600), 国家自然科学基金项目项目(61973138)和江苏省科协 青年科技人才托举工程项目(TJ–2021–006) 资助.
作者单位E-mail
王子赟* 江南大学轻工过程先进控制教育部重点实验室 wangzy0601@163.com 
李南江 江南大学物联网技术应用教育部工程研究中心  
王艳 江南大学物联网技术应用教育部工程研究中心  
纪志成 江南大学物联网技术应用教育部工程研究中心  
中文摘要
      针对受未知但有界噪声干扰的噪声不确定时滞系统, 提出了一种基于凸空间收缩滤波的系统状态估计方法. 首先, 利用凸空间定义包裹系统真实状态的可行集, 求解下一时刻的凸空间体形状矩阵; 随后从凸空间收缩角度, 利用当前时刻噪声和扰动构造带空间, 得到满足状态预测和量测更新条件的凸空间结构; 进而, 依据时滞系统约束条件构造线性规划不等式方程组, 利用线性规划求解该凸空间, 得到包裹状态可行集的最紧致凸空间体; 最后, 通过数值仿真与电池化成工艺变换器案例仿真, 验证了本文所提方法解决不确定时滞系统状态估计问题的有效性和准确性.
英文摘要
      For noise uncertainty time-delay systems, a convex space contraction filtering based state estimation algorithm is studied. First, a convex space is denoted to contain the feasible set of real state of the noise uncertainty time-delay systems, before obtaining the convex space shape matrix in next moment. Then, from the perspective of convex space contraction, the noise term and the disturbance at the present time are used to construct the strip space and to get a convex space structure that satisfies the conditions of state prediction and measurement update. Furthermore, linear programming inequalities are constructed based on the proposed constraints, the convex space is then solved by linear programming and the most compact convex space of the feasible set for wrapping the states is obtained. Finally, a numerical simulation and a case simulation of the battery forming process converter show the effectiveness and accuracy of the proposed algorithm on solving the state estimation problem for uncertain time-delay systems.