引用本文:姜福喜,周兰,高东旭,潘昌忠,熊培银.基于扰动补偿的多源受扰系统反步控制设计[J].控制理论与应用,2022,39(12):2340~2348.[点击复制]
JIANG Fu-xi,ZHOU Lan,GAO Dong-xu,PAN Chang-zhong,XIONG Pei-yin.Disturbance-compensation-based backstepping control for systems with multiple sources of disturbances[J].Control Theory and Technology,2022,39(12):2340~2348.[点击复制]
基于扰动补偿的多源受扰系统反步控制设计
Disturbance-compensation-based backstepping control for systems with multiple sources of disturbances
摘要点击 1211  全文点击 386  投稿时间:2021-08-11  修订日期:2022-12-13
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2022.10734
  2022,39(12):2340-2348
中文关键词  扰动补偿  跟踪控制  反步控制  降阶广义扩张状态观测器
英文关键词  disturbance compensation  tracking control  backstepping control  reduced-order generalized extended state observer
基金项目  国家自然科学基金项目(61673167), 湖南省自然科学基金项目(2021JJ30006), 湖南省教育厅科研项目(21A0321)资助.
作者单位E-mail
姜福喜 湖南科技大学信息与电气工程学院 18890333830@163.com 
周兰* 湖南科技大学信息与电气工程学院 zhoulan75@163.com 
高东旭 湖南科技大学信息与电气工程学院  
潘昌忠 湖南科技大学信息与电气工程学院  
熊培银 湖南科技大学信息与电气工程学院  
中文摘要
      针对一类多源受扰系统的跟踪控制问题, 提出基于降阶广义扩张状态观测器(ROGESO)的指令滤波反步控制设计方法. 首先, 将各通道中的总扰动分别作为扩展状态变量, 通过构造ROGESO对其进行同步实时估计. 在此基础上, 利用反步法递归设计虚拟控制律, 实现各级子系统的镇定, 并将各通道的扰动估计值反馈至对应子系统的虚拟控制律中进行反向补偿, 提高系统的扰动抑制性能, 保证系统输出对参考输入信号的高精度跟踪. 然后, 应用Lyapunov函数分析闭环系统的稳定性. 最后, 通过数值仿真验证所提方法的有效性.
英文摘要
      This paper presents a reduced-order generalized-extended-state-observer (ROGESO)-based commandfiltered backstepping control method for a class of multi-source disturbed systems. First, taking the total disturbance in each channel of the system as an extended state variable, a ROGESO is constructed to synchronously estimate the multisource disturbances in real-time fashion. And based on that, using the backstepping control technique, a virtual control law is designed to stabilize each subsystem. The disturbance estimate in each channel is incorporated into the corresponding virtual control law to improve the disturbance-rejection performance of the system and guarantees the precisely tracking of the reference input. Then, the stability analysis of the closed-loop system is carried out by employing the Lyapunov functionals. Finally, simulation results demonstrate the validity of the method.