引用本文: | 伍乃骐,乔岩.应用离散事件系统控制理论求解生产调度的新方法[J].控制理论与应用,2021,38(11):1809~1818.[点击复制] |
WU Nai-qi,QIAO Yan.A novel production scheduling methodology by using discrete event system control theories[J].Control Theory and Technology,2021,38(11):1809~1818.[点击复制] |
|
应用离散事件系统控制理论求解生产调度的新方法 |
A novel production scheduling methodology by using discrete event system control theories |
摘要点击 1813 全文点击 589 投稿时间:2021-08-15 修订日期:2021-11-22 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2021.10748 |
2021,38(11):1809-1818 |
中文关键词 生产调度 离散事件系统 Petri网 |
英文关键词 production scheduling discrete event systems Petri nets |
基金项目 国家自然科学基金项目(61803397), 澳门科技发展基金项目(0017/2019/A1)资助. |
|
中文摘要 |
众所周知, 生产调度问题属组合优化问题, 一般来说不存在求得精确最优解的多项式算法. 因此, 对于大规
模调度问题, 人们应用启发式算法和元启发式算法以企求得满意解. 在实际的应用中, 许多工业过程需要满足严格
的工艺约束. 对于这类过程的调度问题, 很难应用启发式算法和元启发式算法, 因为这些方法难于保证所求得调度
的可行性. 为了解决这一问题, 本文以半导体芯片制造中组合设备的调度问题作为例子, 介绍了一种基于离散事件
系统控制理论的生产调度新方法. 利用Petri网建模, 任何违反约束的状态均被描述为非法状态, 而使非法状态出现
的调度则是不可行调度. 通过可行调度的存在性分析, 该方法获得可行解空间并将调度问题转化为连续优化问题,
从而可以有效求解. 并且指出, 该方法可以应用于其他应用领域. |
英文摘要 |
It is well known that the production scheduling problem is essentially combinatorial, and generally there is
no polynomial algorithm to find an exact optimal solution. Thus, for large-size scheduling problems people use heuristics
and mate-heuristics to find a satisfactory solution. In practical applications, many industrial processes are subject to strict
process constraints. For the scheduling problem of such processes, it is very difficult to apply heuristics and mate-heuristics,
since they cannot ensure the solution feasibility. To overcome this challenge, with the scheduling problem of cluster tools
in wafer fabrication as a case problem, this paper introduces a novel production scheduling methodology based on discrete
event control theories. With a Petri net model, a state that violates any constraint is described as an illegal one and a
schedule that reaches such a state is infeasible. It shows that, by analyzing the schedulability, the space of feasible solutions
is obtained and the problem can be converted to a continuous optimization problem and can be efficiently solved. It also
points out that it is applicable to other application problems. |
|
|
|
|
|