引用本文:高东旭,周兰,陈静,潘昌忠.基于扰动补偿的无微分模型参考自适应控制系统设计[J].控制理论与应用,2023,40(4):735~743.[点击复制]
Gao Dong-xu,Zhou Lan,Chen Jing,Pan Chang-zhong.Design of derivative-free model-reference adaptive control for a class of uncertain systems based on disturbance compensation[J].Control Theory and Technology,2023,40(4):735~743.[点击复制]
基于扰动补偿的无微分模型参考自适应控制系统设计
Design of derivative-free model-reference adaptive control for a class of uncertain systems based on disturbance compensation
摘要点击 1753  全文点击 604  投稿时间:2021-09-24  修订日期:2023-04-07
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2022.10906
  2023,40(4):735-743
中文关键词  模型参考自适应控制  扰动估计器  参数不确定性  非线性扰动
英文关键词  model-reference adaptive control  disturbance estimator  parameter uncertainty  nonlinear disturbance
基金项目  国家自然科学基金项目(61673167)、湖南省自然科学基金项目(2021JJ30006)和湖南省教育厅科研项目(21A0321)
作者单位E-mail
高东旭 湖南科技大学 gao98911@163.com 
周兰* 湖南科技大学 zhoulan75@163.com 
陈静 湖南科技大学  
潘昌忠 湖南科技大学  
中文摘要
      针对一类含有参数不确定性和未知非线性扰动的系统, 本文提出一种基于扰动补偿的无微分模型参考自适应控制方法, 实现系统输出对参考模型输出信号的高精度跟踪. 首先, 利用被控对象模型信息设计扰动估计器,对系统非线性扰动进行在线估计; 其次, 基于非线性扰动估计值设计参考模型和无微分参数更新律, 构建无微分模型参考自适应控制器, 建立基于扰动补偿和状态反馈的自适应控制律, 以消除参数不确定性和非线性扰动对系统输出的影响, 保证系统输出对参考模型输出的准确跟踪; 然后, 给出闭环系统误差信号收敛条件和控制器参数整定方法; 最后, 通过数值仿真验证所提方法的有效性和优越性.
英文摘要
      This paper presents a derivative-free model-reference adaptive control (DF-MRAC) method for a class of systems with parameter uncertainties and nonlinear disturbances based on the active disturbance estimation and compensation approach so as to achieve the high-precision tracking for reference model output signal. First, exploiting the available model information of the controlled plant, a disturbance estimator is esigned to estimate the unknown nonlinear disturbances. Next, a reference model based on the estimate of nonlinear disturbances and a derivative-free parameter update law are designed to estimate the parameter uncertainties. The estimate of uncertainties is incorporated into a DF-MRAC controller to yield an adaptive control law based on the disturbance compensation and state feedback that effectively compensate for the nonlinear disturbances and parameter uncertainties. Then, the convergence conditions for the error signals of the closed-loop system are investigated and a regulation method for the controller parameters is developed. Finally, simulation results demonstrate the effectiveness and superiority of the proposed method.