引用本文:郭戈,赵梓唯.网联车辆队列有限时间终端滑模控制[J].控制理论与应用,2023,40(1):149~159.[点击复制]
GUO Ge,ZHAO Zi-wei.Finite-time terminal sliding mode control of connected vehicle platoons[J].Control Theory and Technology,2023,40(1):149~159.[点击复制]
网联车辆队列有限时间终端滑模控制
Finite-time terminal sliding mode control of connected vehicle platoons
摘要点击 1602  全文点击 522  投稿时间:2021-10-24  修订日期:2022-02-06
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2022.11017
  2023,40(1):149-159
中文关键词  拓扑结构  二次间距策略  终端滑模  有限时间
英文关键词  topological structure  quadratic spacing strategy  terminal siding mode  finite time
基金项目  国家自然科学基金项目(62173079, U1808205)资助.
作者单位E-mail
郭戈* 东北大学 geguo@yeah.net 
赵梓唯 东北大学  
中文摘要
      本文研究在模型参数不确定及未知干扰的情况下的车队控制问题, 该方法可保证车队系统在有限时间内 稳定. 针对前车–跟随(PF)、双向(BD)的信息拓扑结构, 引入一种新的二次间距策略, 保证车队系统的交通流稳定性. 然后, 提出两种基于非线性终端滑模控制和有限时间理论的分布式协同控制算法, 分别保证了系统的队列稳定性和 强队列稳定性, 同时设计自适应律来处理系统中不确定参数和外源性扰动的影响, 通过构造Lyapunov函数分析系统 的有限时间稳定性与队列稳定性. 最后通过数值仿真结果, 证明了所提出的控制算法的有效性. 结果表明, 本文所提 的方法能保证队列稳定性、交通流稳定性、并保证闭环系统中的所有信号都是有限时间稳定的.
英文摘要
      The paper investigates a vehicular platoon control problem with uncertain parameters and unknown disturbances, this method is able to achieve stability of the platoon control system in a finite time. For the predecessor-following and bidirectional information flow topologies, a new quadratic spacing strategy is introduced to achieve traffic flow stability. And then based on the nonlinear terminal sliding mode control and finite time stability theory, two distributed adaptive terminal sliding mode control schemes are presented to ensure the string stability and strong string stability, and the adaptive control law is designed to deal with the influence of uncertain parameters and exogenous disturbances. Finite time stability and string stability of the system are analyzed by constructing the Lyapunov function. Finally, the effectiveness of the proposed control scheme is demonstrated by numerical simulations. The results show that the proposed method can guarantee the string stability, traffic flow stability, and ensure all the states stabilized in a finite time.