引用本文: | 陈嘉兴,董怡靖,赵晓旭,刘志华,刘扬.水下机器人协同控制的TO模型区域划分定位[J].控制理论与应用,2022,39(11):2028~2035.[点击复制] |
CHEN Jia-xing,DONG Yi-jing,ZHAO Xiao-xu,LIU Zhi-hua,LIU Yang.A region determination localization of TO-model for cooperative control of autonomous underwater vehicles[J].Control Theory and Technology,2022,39(11):2028~2035.[点击复制] |
|
水下机器人协同控制的TO模型区域划分定位 |
A region determination localization of TO-model for cooperative control of autonomous underwater vehicles |
摘要点击 1448 全文点击 355 投稿时间:2021-10-26 修订日期:2022-09-14 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2022.11034 |
2022,39(11):2028-2035 |
中文关键词 水声传感器网络 自主水下机器人 区域划分 TO模型 最小值判定法 |
英文关键词 underwater acoustic sensor networks autonomous underwater vehicles region determination TO-model minimal judgement method |
基金项目 国家自然科学基金项目(61771181, 62171179, 62071167)资助. |
|
中文摘要 |
针对稀疏型水声传感器网络定位算法面临的定位覆盖率低和误差高的问题, 本文提出一种水下机器人协
同控制的截角八面体(TO)模型区域划分定位算法. 首先搭建定位系统模型, 提出TO模型满足三维目标区域划分原
则, 并证明其体积比相对最优; 然后设计TO模型最优区域划分方式, 提出最小值判定法进一步整合目标节点, 自主
水下机器人(AUVs)协同控制筛选包含目标节点的子区域; 通过分析通信半径和虚拟锚节点数量对实验结果的影响,
设置最优定位参数, 降低能耗和定位误差, 最后利用最小二乘法完成定位. 本文分别对定位覆盖率、子区域AUV路
径长度和定位精度进行了仿真实验, 结果表明, 相比于其他区域划分方案, 所提算法误差较小、定位覆盖率高且鲁
棒性强. |
英文摘要 |
Aiming at the problems of coverage and error of localization in underwater acoustic sensor networks
(UASNs), a region determination localization algorithm of truncated octahedron (TO) model for cooperative control
(TORD) of autonomous underwater vehicles (AUVs) is proposed in this paper. Firstly, the localization model is built,
the truncated octahedron model (TO–model) is proved to meet the principles of three-dimensional region determination,
and its volume ratio is proved to be relatively optimal. Then, the way of region determination is designed, a method of
minimal judgement is proposed to further integrate these target nodes, and cooperative control of AUVs filters sub-regions
containing target nodes. By analyzing the influence of communication radius and the number of virtual anchor nodes on
the experimental results, and the optimal location parameters are set to reduce energy consumption and localization error.
Finally, the least square method is used to complete the localization. In this paper, simulation experiments are carried out on
the localization coverage of target nodes, the path length of sub-regions for AUVs, and localization accuracy, respectively.
The results show that compared with other regional division schemes, the proposed algorithm has lower localization error,
higher coverage and better robustness. |
|
|
|
|
|