引用本文:郑立楷,吴玉香,王孝洪,黄淇松.伺服系统弹性负载的闭环辨识方法[J].控制理论与应用,2023,40(3):468~476.[点击复制]
ZHENG Li-kai,WU Yu-xiang,WANG Xiao-hong,HUANG Qi-song.Closed-loop identification method for servo elastic load[J].Control Theory and Technology,2023,40(3):468~476.[点击复制]
伺服系统弹性负载的闭环辨识方法
Closed-loop identification method for servo elastic load
摘要点击 1530  全文点击 935  投稿时间:2021-11-02  修订日期:2022-03-03
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2022.11058
  2023,40(3):468-476
中文关键词  机械谐振  系统辨识  最小二乘法  模型降阶
英文关键词  mechanical resonance  system identification  least squares method  model reduction
基金项目  国家自然科学基金项目(62173150), 广东省基础与应用基础研究基金项目(2022B1515120003)资助.
作者单位E-mail
郑立楷 华南理工大学自动化科学与工程学院 201910102743@mail.scut.edu.cn 
吴玉香 华南理工大学自动化科学与工程学院  
王孝洪* 华南理工大学自动化科学与工程学院 xhwang@scut.edu.cn 
黄淇松 华南理工大学自动化科学与工程学院  
中文摘要
      为有效解决机械谐振问题, 伺服系统弹性负载的辨识是非常关键的步骤. 本文以工业中最常见的双惯量系 统作为辨识对象设计闭环辨识方法, 使用伪随机二进制序列作为激励并采集电机电流转速信号. 在此基础上, 使用 最小二乘法拟合系统的自回归移动平均模型, 并提高模型阶次以保证拟合精度. 为抑制采样噪声的影响, 提出基于 平衡截断的模型降阶方法, 根据Hankel奇异值大小判断系统阶次并提取主要模态. 最后, 通过仿真和实验进行验证, 结果表明: 相比于传统辨识方法, 本文所提出的辨识方法能够有效抑制噪声干扰, 具有更高的精度.
英文摘要
      The identification for the servo elastic load is an essential step to solve mechanical resonance problem. This paper designs a closed-loop identification method for the two-mass system, which is the most common in industrial application. The current and velocity signals of the motor are collected while the pseudo-random binary sequence is used to stimulate system. On this basis, the least squares method is applied to fit the auto-regressive and moving average model, using a higher fitting order to ensure the accuracy. In order to suppress the influence of sampling noise, a balanced truncation based model reduction method is proposed, which judges the order of the system and extracts dominant states according to the Hankel singular value. In the end, the proposed method is verified by simulation and experiment. The results show that: compared with the traditional identification method, the proposed identification method can effectively suppress noise and has higher accuracy.