引用本文:黄宴委,林涛,黄文超,陈少斌.一种快速有限时间收敛的轨迹跟踪引导律[J].控制理论与应用,2023,40(6):965~976.[点击复制]
HUANG Yan-wei,LIN Tao,HUANG Wen-chao,CHEN Shao-bin.Guidance law with fast finite time convergence for trajectory tracking[J].Control Theory and Technology,2023,40(6):965~976.[点击复制]
一种快速有限时间收敛的轨迹跟踪引导律
Guidance law with fast finite time convergence for trajectory tracking
摘要点击 2722  全文点击 812  投稿时间:2022-01-02  修订日期:2023-06-12
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2022.20002
  2023,40(6):965-976
中文关键词  无人船  轨迹跟踪  引导律  快速有限时间收敛  时变前视距离
英文关键词  unmanned surface vehicle  trajectory tracking  guidance law  fast finite time convergence  time-varying look-ahead distance
基金项目  国家自然科学基金项目(51977040), 福建省工业科技引导项目(2019H0007)
作者单位E-mail
黄宴委 福州大学电气工程与自动化学院 sjtu_huanghao@fzu.edu.cn 
林涛 福州大学电气工程与自动化学院 1149086189@qq.com 
黄文超* 福州大学电气工程与自动化学院 147392980@qq.com 
陈少斌 福州大学电气工程与自动化学院 286790921@qq.com 
中文摘要
      针对参考轨迹曲率变化大导致前视距离(LAD)调整不及时, 使得无人船(USV)轨迹跟踪误差收敛慢的问题, 本文利用轨迹跟踪几何关系, 建立位置跟踪误差动态系统, 引入曲率参数设计一种新型的时变前视距离(NTLAD), 提出一种快速有限时间收敛的轨迹跟踪引导律(FFTC-GL), 包括期望艏向引导律和期望巡航速度引导律研究, 以快速准确跟踪大范围曲率的轨迹. 首先, 构造NTLAD的稳定约束条件, 结合图解法求解NTLAD函数, 实现法向误差快 速有限时间收敛, 并且引入曲率参数, 快速准确地跟踪不同曲率的轨迹. 其次, 基于切向误差的有限时间技术, 设计快速有限时间速度引导律, 实现切向误差动态系统的有限时间稳定. 最后, 通过对比有限时间上确界, 表明引导律 对位置跟踪误差收敛的快速性. 轨迹跟踪仿真表明FFTC-GL能够在有限时间内跟踪参考轨迹, 保证曲线拐点位置跟踪误差快速收敛.
英文摘要
      Due to look-ahead distance (LAD) is not adjusted in time to track the reference trajectory with a large range of curvature, and unmanned surface vehicle (USV) tracks the trajectory with a slow convergence. The position tracking error of dynamic systems is established by the geometric relationship of trajectory tracking, guidance law with fast finite time convergence (FFTC-GL) is proposed with a novel time-varying LAD (NTLAD) with curvature parameters to speed trajectory tracking. FFTC-GL includes the desired heading guidance law and the desired cruise speed guidance law. Firstly, NTLAD function is solved by graphical method based on the stability constraints of NTLAD to realize fast finite time convergence of cross-error, and the curvature parameter is introduced to track the curve trajectory in a large range of curvature. Secondly, the fast finite time speed guidance law is designed by the finite time term of along-error to realize the finite time stability of along-error dynamic system. Moreover, the upper bound of the convergence time is deduced for FFTC-GL. Finally, simulations of the trajectory tracking for USV indicate that, FFTC-GL can track the reference trajectory quickly and accurately, both for straight lines and curve with a large range of curvature.