引用本文:刘浩,宗西举,郑江涛,徐秀妮.网络化热方程的集中事件触发控制[J].控制理论与应用,2023,40(8):1401~1407.[点击复制]
LIU Hao,ZONG Xi-ju,ZHENG Jiang-tao,XU Xiu-ni.Centralized event-triggered control of networked heat equation[J].Control Theory and Technology,2023,40(8):1401~1407.[点击复制]
网络化热方程的集中事件触发控制
Centralized event-triggered control of networked heat equation
摘要点击 3507  全文点击 356  投稿时间:2022-04-17  修订日期:2023-03-31
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2023.20286
  2023,40(8):1401-1407
中文关键词  分布式参数多智能体系统  事件触发控制  网络化热方程  边界一致性控制  李雅普诺夫函数
英文关键词  distributed parametric multi-agent system  event-triggered control  networked heat equation  boundary consistency control  Lyapunov function
基金项目  山东省高等学校青年创新科技计划项目(2019KJN029), 国家自然科学基金项目(12026215)
作者单位E-mail
刘浩 济南大学 自动化与电气工程学院 zongxiju@163.com 
宗西举* 济南大学 信息科学与工程学院 cse_zongxj@ujn.edu.cn 
郑江涛 济南大学 自动化与电气工程学院  
徐秀妮 陇东学院电气工程学院  
中文摘要
      本文对热方程建模的分布式参数化多智能体系统进行研究, 设计了基于事件触发控制下的一致性边界控制器, 将网络化热方程的状态驱动到相同的稳定状态. 其中每一个子系统的边界信息能被测量, 并且所有的智能体 由无向静态拓扑连接. 事件触发控制器由以下两部分组成: 一是基于网络拓扑的边界局部交互作用, 驱动所有子系统达到相同的状态; 二是由事件触发条件建立的触发时刻. 本文证明了在事件触发的边界一致性控制下两个连续触 发时刻之间存在最小停留时间以避免Zeno现象; 同时利用李雅普诺夫函数分析并保证了闭环系统的稳定性和适定性. 最后, 给出了由5个热方程组成的多智能体系统的仿真算例, 结果证实了本文所设计事件触发控制器的真实性
英文摘要
      In this paper, a distributed parametric multi-agent system based on the heat equation modeling is studied, and a consistent boundary controller based on the event-triggered control is designed to drive the states of networked heat equation to the same stable state. The boundary information of each subsystem can be measured, and all agents are connected by an undirected static topology. The event-triggered controller consists of the following two parts: one is the boundary local interaction based on the network topology, which drives all subsystems to reach the same state; the second is the trigger moment established by the event trigger condition. In this paper, it is proved that there exists a minimum dwell time between two consecutive triggering moments to avoid the Zeno phenomenon under the the event-triggered boundary consistency control. At the same time, the Lyapunov function is used to analyze and guarantee the stability and well-posedness of the closed-loop system. Finally, a simulation example of a multi-agent system consisting of five heat equations is given, and the results confirm the authenticity of the event-triggered controller designed in this paper.