引用本文: | 胡振涛,崔南方,胡雪君,雷晓琪.基于强化学习的多技能项目调度算法[J].控制理论与应用,2024,41(3):502~511.[点击复制] |
HU Zhen-tao,CUI Nan-fang,HU Xue-jun,LEI Xiao-qi.Reinforcement learning-based algorithm for multi-skill project scheduling problem[J].Control Theory and Technology,2024,41(3):502~511.[点击复制] |
|
基于强化学习的多技能项目调度算法 |
Reinforcement learning-based algorithm for multi-skill project scheduling problem |
摘要点击 3169 全文点击 264 投稿时间:2022-06-27 修订日期:2024-01-17 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2023.20566 |
2024,41(3):502-511 |
中文关键词 多技能资源 项目调度 智能算法 强化学习 并行调度 |
英文关键词 multi-skill resource project scheduling intelligence algorithm reinforcement learning PSGS |
基金项目 国家自然科学基金项目(71971094, 71701067, 72071075), 湖南省自然科学基金项目(2019JJ50039)资助. |
|
中文摘要 |
多技能项目调度存在组合爆炸的现象, 其问题复杂度远超传统的单技能项目调度, 启发式算法和元启发式
算法在求解多技能项目调度问题时也各有缺陷. 为此, 根据项目调度的特点和强化学习的算法逻辑, 本文设计了基
于强化学习的多技能项目调度算法. 首先, 将多技能项目调度过程建模为符合马尔科夫性质的序贯决策过程, 并依
据决策过程设计了双智能体机制. 而后, 通过状态整合和行动分解, 降低了价值函数的学习难度. 最后, 为进一步提
高算法性能, 针对资源的多技能特性, 设计了技能归并法, 显著降低了资源分配算法的时间复杂度. 与启发式算法的
对比实验显示, 本文所设计的强化学习算法求解性能更高, 与元启发式算法的对比实验表明, 该算法稳定性更强, 且
求解速度更快. |
英文摘要 |
Combinatorial explosion is a common phenomenon in multi-skill project scheduling, which leads to higher
complexity in multi-skill project scheduling problem (MSPSP) than in traditional single-skill project scheduling problem.
Heuristics and meta-heuristics have disadvantages in solving MSPSP. Therefore, based on the characteristics of project
scheduling and the algorithmic logic of reinforcement learning, a multi-skilled project scheduling algorithm based on reinforcement
learning is designed in this paper. Firstly, the multi-skill project scheduling process is modeled as a Markov
decision process (MDP). Then, a double-agent mechanism is proposed, and state integration method and action decomposition
method are designed to reduce the complexity of value function learning. Finally, skills conflation algorithm is
developed to reduce the time complexity of allocating resources in MSPSP. Comparative experiments between the proposed
RL algorithm and heuristics show that the reinforcement learning (RL) has better performance, and experiments between
the proposed RL algorithm and meta-heuristics show that the RL has higher stability and shorter running time. |
|
|
|
|
|