引用本文:赵子文,陈辉,连峰,张光华.厚尾噪声条件下的学生t泊松多伯努利混合滤波器[J].控制理论与应用,2024,41(9):1598~1609.[点击复制]
ZHAO Zi-wen,CHEN Hui,LIAN Feng,ZHANG Guang-hua.A Student’s t Poisson multi-Bernoulli mixture filter in the presence of heavy-tailed noise[J].Control Theory and Technology,2024,41(9):1598~1609.[点击复制]
厚尾噪声条件下的学生t泊松多伯努利混合滤波器
A Student’s t Poisson multi-Bernoulli mixture filter in the presence of heavy-tailed noise
摘要点击 1781  全文点击 27  投稿时间:2022-07-13  修订日期:2024-03-13
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2023.20625
  2024,41(9):1598-1609
中文关键词  随机有限集  多目标跟踪  学生t混合  厚尾噪声  泊松多伯努利混合
英文关键词  random finite set  multi-target tracking  Student’s t mixture  heavy-tail noise  Poisson multi-Bernoulli mixture
基金项目  国家自然科学基金项目(62163023, 61873116, 62173266, 62103318), 甘肃省教育厅产业支撑计划项目(2021CYZC–02), 甘肃省教育厅优秀研究生 “创新之星”项目(2022CXZX–468), 2023年甘肃省军民融合发展专项资金项目, 2024年甘肃省重点人才项目资助.
作者单位E-mail
赵子文 兰州理工大学 zwzhao0930@163.com 
陈辉* 兰州理工大学 huich78@hotmail.com 
连峰 西安交通大学  
张光华 西安交通大学  
中文摘要
      针对运动过程和观测过程均受到异常噪声干扰的复杂不确定性多目标跟踪问题, 本文创新性地提出了学生t混合泊松多伯努利混合滤波器. 首先, 直接将广域分布的异常噪声特性建模为学生t分布. 随后, 将泊松多伯努利混合滤波器的泊松点过程(PPP)和多伯努利混合(MBM)的概率密度参数合理的近似为学生t混合形式. 其次, 基于多目标概率密度的学生t混合模型, 详细推导了泊松多伯努利混合滤波器学生t混合共轭先验形式, 建立了学生t混合泊松多伯努利混合的闭式递推框架. 最后, 通过带显著拖尾分布特性的过程噪声和量测噪声共同干扰的复杂多目标跟踪仿真实验, 验证了所提滤波算法的有效性.
英文摘要
      Aiming at the complex uncertainty multi-target tracking where both the motion process and observation process are disturbed by anomalous noise, this paper innovatively proposes a Student’s t mixture Poisson multi-Bernoulli mixture filter. First, the anomalous noise characteristics of the wide-area distribution are directly modeled as the Student’s t distribution. Subsequently, the probability density parameters of the Poisson point process (PPP) and the multi-Bernoulli mixture (MBM) of the Poisson multi-Bernoulli mixture filter are reasonably approximated by the Student’s t mixture form. Moreover, based on the Student’s t mixture model which approximates the multi-target probability density, the Student’s t mixture conjugate prior form of Poisson multi-Bernoulli mixture filter is derived in detail and a closed-form recursive framework of Student’s t mixture Poisson multi-Bernoulli mixture is established. Finally, the effectiveness of the proposed filtering algorithm is verified by complex multi-target tracking simulation experiments under the joint interference of process noise and measurement noise with significant trailing distribution characteristics.