引用本文: | 贾付金,张天良,陆俊玮.不确定非线性系统的全状态约束镇定控制[J].控制理论与应用,2024,41(12):2393~2400.[点击复制] |
JIA Fu-Jin,Zhang Tianliang,Lu Junwei.Full-state constraints stabilization control for uncertain nonlinear systems[J].Control Theory and Technology,2024,41(12):2393~2400.[点击复制] |
|
不确定非线性系统的全状态约束镇定控制 |
Full-state constraints stabilization control for uncertain nonlinear systems |
摘要点击 3432 全文点击 83 投稿时间:2022-08-17 修订日期:2024-10-14 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2023.20731 |
2024,41(12):2393-2400 |
中文关键词 非线性系统 全状态约束 反步法 障碍Lyapunov函数 |
英文关键词 nonlinear systems full-state constraints backstepping barrier Lyapunov functions |
基金项目 国家自然科学基金项目(62303001), 安徽大学引进人才科研启动经费项目(S020318002/007), 江苏省研究生科研与实践创新计划项目(KYCX21 0305)资助. |
|
中文摘要 |
本文研究了一类具有未知函数非线性系统的全状态约束镇定控制. 与解决未知函数问题的模糊逼近方法和神经网络逼近方法不同, 本文提出的控制方法可以使系统状态渐近收敛到原点, 并解决了反步法的“微分爆炸”问题. 同时, 与解决全状态约束控制问题的障碍Lyapunov函数不同, 本文提出了一种新的全状态约束方法和引入的引理相结合设计的算法, 可使得状态是渐近稳定的. 最后, Duffing系统和单连杆机器人系统的仿真结果验证了本文算法的有效性. |
英文摘要 |
In this paper, the full-state constraints stabilization control for a class of nonlinear systems with unknown functions is studied. Different from the fuzzy approximation method and the neural network approximation method for solving the unknown function problem, the control method in this paper can make the system state asymptotically converge to the origin, and solve the “explosion of terms” problem of the backstepping method. At the same time, different from the barrier Lyapunov functions for solving the full-state constraints control problem, a new full-state constraints method is proposed to make the state asymptotically stable. Finally, the simulation results of Duffing system and single-link robot verify the effectiveness of this algorithm. |
|
|
|
|
|